Inferring Grammar-based Structure Models from 3D Microscopy Data

J. Schlecht, Kobus Barnard, Ekaterina H. Spriggs, B. Pryor
{"title":"Inferring Grammar-based Structure Models from 3D Microscopy Data","authors":"J. Schlecht, Kobus Barnard, Ekaterina H. Spriggs, B. Pryor","doi":"10.1109/CVPR.2007.383031","DOIUrl":null,"url":null,"abstract":"We present a new method to fit grammar-based stochastic models for biological structure to stacks of microscopic images captured at incremental focal lengths. Providing the ability to quantitatively represent structure and automatically fit it to image data enables important biological research. We consider the case where individuals can be represented as an instance of a stochastic grammar, similar to L-systems used in graphics to produce realistic plant models. In particular, we construct a stochastic grammar of Alternaria, a genus of fungus, and fit instances of it to microscopic image stacks. We express the image data as the result of a generative process composed of the underlying probabilistic structure model together with the parameters of the imaging system. Fitting the model then becomes probabilistic inference. For this we create a reversible-jump MCMC sampler to traverse the parameter space. We observe that incorporating spatial structure helps fit the model parts, and that simultaneously fitting the imaging system is also very helpful.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

We present a new method to fit grammar-based stochastic models for biological structure to stacks of microscopic images captured at incremental focal lengths. Providing the ability to quantitatively represent structure and automatically fit it to image data enables important biological research. We consider the case where individuals can be represented as an instance of a stochastic grammar, similar to L-systems used in graphics to produce realistic plant models. In particular, we construct a stochastic grammar of Alternaria, a genus of fungus, and fit instances of it to microscopic image stacks. We express the image data as the result of a generative process composed of the underlying probabilistic structure model together with the parameters of the imaging system. Fitting the model then becomes probabilistic inference. For this we create a reversible-jump MCMC sampler to traverse the parameter space. We observe that incorporating spatial structure helps fit the model parts, and that simultaneously fitting the imaging system is also very helpful.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从3D显微镜数据推断基于语法的结构模型
我们提出了一种新的方法,将基于语法的生物结构随机模型拟合到以增量焦距捕获的显微图像堆栈中。提供定量表示结构并自动将其与图像数据相匹配的能力,可以实现重要的生物学研究。我们考虑个体可以被表示为随机语法实例的情况,类似于图形中用于生成逼真植物模型的l系统。特别是,我们构建了真菌属Alternaria的随机语法,并将其实例拟合到显微图像堆栈中。我们将图像数据表示为由底层概率结构模型和成像系统参数组成的生成过程的结果。然后,拟合模型就变成了概率推理。为此,我们创建了一个可逆跳跃MCMC采样器来遍历参数空间。我们观察到,结合空间结构有助于模型部件的拟合,同时拟合成像系统也很有帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Region and Edge Cues for Image Segmentation in a Probabilistic Gaussian Mixture Framework Fast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression Enhanced Level Building Algorithm for the Movement Epenthesis Problem in Sign Language Recognition Change Detection in a 3-d World Layered Graph Match with Graph Editing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1