A Hexagon-Based Honeycomb Routing Architecture for FPGA

Kaichuang Shi, Hao Zhou, Lingli Wang
{"title":"A Hexagon-Based Honeycomb Routing Architecture for FPGA","authors":"Kaichuang Shi, Hao Zhou, Lingli Wang","doi":"10.1109/ICFPT52863.2021.9609805","DOIUrl":null,"url":null,"abstract":"Field Programmable Gate Arrays (FPGAs) are widely used for their flexibility and short time to market. FPGA routing architecture design is the key problem due to the fact that it plays a dominant role in the area, delay and power. Most of modern FPGAs are island-style which provide abundant vertical and horizontal tracks to guarantee the circuit designs can be routed successfully. Most connections in placed netlists are diagonal which may lead to passing through extra turning switches, resulting in increased delay cost and high routing density. In this paper, we propose a hexagon-based honeycomb FPGA routing architecture to improve the routability and performance. In honeycomb architecture, there are three kinds of routing channels which can provide more freedom to decrease the turning switches on the routing paths. In addition, the router lookahead algorithm is enhanced to support the honeycomb architecture which is then evaluated by the enhanced VTR with provided benchmarks. The experimental results show that the honeycomb architecture can improve the minimum routing channel width by 7.7% compared with traditional rectangular architecture with length-1 wires. In addition, the honeycomb architecture can achieve 9.9% improvement on the routed wirelength, 11.5% on the critical path delay and 12.4% on the area-delay product.","PeriodicalId":376220,"journal":{"name":"2021 International Conference on Field-Programmable Technology (ICFPT)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT52863.2021.9609805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Field Programmable Gate Arrays (FPGAs) are widely used for their flexibility and short time to market. FPGA routing architecture design is the key problem due to the fact that it plays a dominant role in the area, delay and power. Most of modern FPGAs are island-style which provide abundant vertical and horizontal tracks to guarantee the circuit designs can be routed successfully. Most connections in placed netlists are diagonal which may lead to passing through extra turning switches, resulting in increased delay cost and high routing density. In this paper, we propose a hexagon-based honeycomb FPGA routing architecture to improve the routability and performance. In honeycomb architecture, there are three kinds of routing channels which can provide more freedom to decrease the turning switches on the routing paths. In addition, the router lookahead algorithm is enhanced to support the honeycomb architecture which is then evaluated by the enhanced VTR with provided benchmarks. The experimental results show that the honeycomb architecture can improve the minimum routing channel width by 7.7% compared with traditional rectangular architecture with length-1 wires. In addition, the honeycomb architecture can achieve 9.9% improvement on the routed wirelength, 11.5% on the critical path delay and 12.4% on the area-delay product.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于六边形的FPGA蜂窝路由结构
现场可编程门阵列(fpga)因其灵活性和上市时间短而得到广泛应用。FPGA的路由结构设计是关键问题,因为它在面积、时延和功耗方面起着主导作用。现代fpga大多采用岛式设计,提供了丰富的纵横轨迹,保证了电路设计的顺利布线。放置网表中的大多数连接都是对角的,这可能导致通过额外的转向交换机,从而增加延迟成本和高路由密度。为了提高可达性和性能,本文提出了一种基于六边形的蜂窝FPGA路由架构。在蜂窝结构中,有三种路由通道可以提供更大的自由度,以减少路由路径上的转弯开关。此外,路由器前瞻算法被增强以支持蜂窝架构,然后由增强的VTR根据提供的基准进行评估。实验结果表明,与传统的长度为1线的矩形结构相比,蜂窝结构可以将最小路由通道宽度提高7.7%。此外,蜂窝结构的路由长度提高了9.9%,关键路径延迟提高了11.5%,区域延迟提高了12.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of IOBUF-based Ring Oscillators StreamZip: Compressed Sliding-Windows for Stream Aggregation Tens of gigabytes per second JSON-to-Arrow conversion with FPGA accelerators A High-Performance and Flexible FPGA Inference Accelerator for Decision Forests Based on Prior Feature Space Partitioning SoC FPGA implementation of an unmanned mobile vehicle with an image transmission system over VNC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1