An Algorithm for Cost-Effectively Storing Scientific Datasets with Multiple Service Providers in the Cloud

Dong Yuan, X. Liu, Li-zhen Cui, Tiantian Zhang, Wenhao Li, Dahai Cao, Yun Yang
{"title":"An Algorithm for Cost-Effectively Storing Scientific Datasets with Multiple Service Providers in the Cloud","authors":"Dong Yuan, X. Liu, Li-zhen Cui, Tiantian Zhang, Wenhao Li, Dahai Cao, Yun Yang","doi":"10.1109/eScience.2013.34","DOIUrl":null,"url":null,"abstract":"The proliferation of cloud computing allows scientists to deploy computation and data intensive applications without infrastructure investment, where large generated datasets can be flexibly stored with multiple cloud service providers. Due to the pay-as-you-go model, the total application cost largely depends on the usage of computation, storage and bandwidth resources, and cutting the cost of cloud-based data storage becomes a big concern for deploying scientific applications in the cloud. In this paper, we propose a novel algorithm that can automatically decide whether a generated dataset should be 1) stored in the current cloud, 2) deleted and re-generated whenever reused or 3) transferred to cheaper cloud service for storage. The algorithm finds the trade-off among computation, storage and bandwidth costs in the cloud, which are three key factors for the cost of storing generated application datasets with multiple cloud service providers. Simulations conducted with popular cloud service providers' pricing models show that the proposed algorithm is highly cost-effective to be utilised in the cloud.","PeriodicalId":325272,"journal":{"name":"2013 IEEE 9th International Conference on e-Science","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 9th International Conference on e-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2013.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The proliferation of cloud computing allows scientists to deploy computation and data intensive applications without infrastructure investment, where large generated datasets can be flexibly stored with multiple cloud service providers. Due to the pay-as-you-go model, the total application cost largely depends on the usage of computation, storage and bandwidth resources, and cutting the cost of cloud-based data storage becomes a big concern for deploying scientific applications in the cloud. In this paper, we propose a novel algorithm that can automatically decide whether a generated dataset should be 1) stored in the current cloud, 2) deleted and re-generated whenever reused or 3) transferred to cheaper cloud service for storage. The algorithm finds the trade-off among computation, storage and bandwidth costs in the cloud, which are three key factors for the cost of storing generated application datasets with multiple cloud service providers. Simulations conducted with popular cloud service providers' pricing models show that the proposed algorithm is highly cost-effective to be utilised in the cloud.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在云中与多个服务提供商经济有效地存储科学数据集的算法
云计算的扩散使科学家能够部署计算和数据密集型应用程序,而无需基础设施投资,其中生成的大型数据集可以灵活地存储在多个云服务提供商中。由于采用按需付费的模式,应用程序的总成本在很大程度上取决于计算、存储和带宽资源的使用情况,削减基于云的数据存储成本成为在云中部署科学应用程序的一个大问题。在本文中,我们提出了一种新的算法,该算法可以自动决定生成的数据集是否应该1)存储在当前云中,2)在重用时删除并重新生成,或者3)转移到更便宜的云服务进行存储。该算法找到了云计算、存储和带宽成本之间的权衡,这是在多个云服务提供商中存储生成的应用程序数据集的成本的三个关键因素。用流行的云服务提供商的定价模型进行的仿真表明,所提出的算法在云中使用具有很高的成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Policy Derived Access Rights in the Social Cloud Accelerating In-memory Cross Match of Astronomical Catalogs Scientific Analysis by Queries in Extended SPARQL over a Scalable e-Science Data Store Malleable Access Rights to Establish and Enable Scientific Collaboration An Autonomous Security Storage Solution for Data-Intensive Cooperative Cloud Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1