{"title":"Semantic Web Accessibility Testing via Hierarchical Visual Analysis","authors":"Mohammad Bajammal, A. Mesbah","doi":"10.1109/ICSE43902.2021.00143","DOIUrl":null,"url":null,"abstract":"Web accessibility, the design of web apps to be usable by users with disabilities, impacts millions of people around the globe. Although accessibility has traditionally been a marginal afterthought that is often ignored in many software products, it is increasingly becoming a legal requirement that must be satisfied. While some web accessibility testing tools exist, most only perform rudimentary syntactical checks that do not assess the more important high-level semantic aspects that users with disabilities rely on. Accordingly, assessing web accessibility has largely remained a laborious manual process requiring human input. In this paper, we propose an approach, called AXERAY, that infers semantic groupings of various regions of a web page and their semantic roles. We evaluate our approach on 30 real-world websites and assess the accuracy of semantic inference as well as the ability to detect accessibility failures. The results show that AXERAY achieves, on average, an F-measure of 87% for inferring semantic groupings, and is able to detect accessibility failures with 85% accuracy.","PeriodicalId":305167,"journal":{"name":"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE43902.2021.00143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Web accessibility, the design of web apps to be usable by users with disabilities, impacts millions of people around the globe. Although accessibility has traditionally been a marginal afterthought that is often ignored in many software products, it is increasingly becoming a legal requirement that must be satisfied. While some web accessibility testing tools exist, most only perform rudimentary syntactical checks that do not assess the more important high-level semantic aspects that users with disabilities rely on. Accordingly, assessing web accessibility has largely remained a laborious manual process requiring human input. In this paper, we propose an approach, called AXERAY, that infers semantic groupings of various regions of a web page and their semantic roles. We evaluate our approach on 30 real-world websites and assess the accuracy of semantic inference as well as the ability to detect accessibility failures. The results show that AXERAY achieves, on average, an F-measure of 87% for inferring semantic groupings, and is able to detect accessibility failures with 85% accuracy.