A study towards optimal data layout for GPU computing

E. Zhang, Han Li, Xipeng Shen
{"title":"A study towards optimal data layout for GPU computing","authors":"E. Zhang, Han Li, Xipeng Shen","doi":"10.1145/2247684.2247699","DOIUrl":null,"url":null,"abstract":"The performance of Graphic Processing Units (GPU) is sensitive to irregular memory references. A recent study shows the promise of eliminating irregular references through runtime thread-data remapping. However, how to efficiently determine the optimal mapping is yet an open question. This paper presents some initial exploration to the question, especially in the dimension of data layout optimization. It describes three algorithms to compute or approximate optimal data layouts for GPU. These algorithms exhibit a spectrum of tradeoff among the space cost, time cost, and quality of the resulting data layouts.","PeriodicalId":130040,"journal":{"name":"Workshop on Memory System Performance and Correctness","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Memory System Performance and Correctness","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2247684.2247699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The performance of Graphic Processing Units (GPU) is sensitive to irregular memory references. A recent study shows the promise of eliminating irregular references through runtime thread-data remapping. However, how to efficiently determine the optimal mapping is yet an open question. This paper presents some initial exploration to the question, especially in the dimension of data layout optimization. It describes three algorithms to compute or approximate optimal data layouts for GPU. These algorithms exhibit a spectrum of tradeoff among the space cost, time cost, and quality of the resulting data layouts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向GPU计算的最佳数据布局研究
图形处理单元(GPU)的性能对不规则内存引用非常敏感。最近的一项研究表明,通过运行时线程数据重映射消除不规则引用是有希望的。然而,如何有效地确定最优映射仍然是一个悬而未决的问题。本文对这一问题进行了初步的探索,特别是在数据布局优化的维度上。介绍了计算或近似GPU最优数据布局的三种算法。这些算法在空间成本、时间成本和结果数据布局的质量之间进行了一系列权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
All-window data liveness Cache rationing for multicore Software-controlled transparent management of heterogeneous memory resources in virtualized systems Program-centric cost models for locality A study of data structures with a deep heap shape
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1