ADAPTIVE GUARANTEED ESTIMATION OF A CONSTANT SIGNAL UNDER UNCERTAINTY OF MEASUREMENT ERRORS

D. Khadanovich, V. Shiryaev
{"title":"ADAPTIVE GUARANTEED ESTIMATION OF A CONSTANT SIGNAL UNDER UNCERTAINTY OF MEASUREMENT ERRORS","authors":"D. Khadanovich, V. Shiryaev","doi":"10.14529/ctcr200403","DOIUrl":null,"url":null,"abstract":"ditions, the values of measurement errors , 1, , k v k N  are unknown (uncontrolled). A priori information about measurement errors is formalized by choosing a hypothesis about the properties of errors k v . The following hypotheses are traditional. 1. The measurement errors k v are random and given by probability density function with known parameters. 2. The measurement errors k v are uncertain quantities: k v V  , where V is a given convex set of their possible values. Acceptance of the hypothesis about the probabilistic nature of measurement errors makes it possible to formulate the problem within the framework of the stochastic approach as the problem of finding the optimal estimate in the mean square sense and to use statistical methods [2]. The most common is the use of the least-squares method (LS) [1, 2], i.e. minimizing a function","PeriodicalId":338904,"journal":{"name":"Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/ctcr200403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ditions, the values of measurement errors , 1, , k v k N  are unknown (uncontrolled). A priori information about measurement errors is formalized by choosing a hypothesis about the properties of errors k v . The following hypotheses are traditional. 1. The measurement errors k v are random and given by probability density function with known parameters. 2. The measurement errors k v are uncertain quantities: k v V  , where V is a given convex set of their possible values. Acceptance of the hypothesis about the probabilistic nature of measurement errors makes it possible to formulate the problem within the framework of the stochastic approach as the problem of finding the optimal estimate in the mean square sense and to use statistical methods [2]. The most common is the use of the least-squares method (LS) [1, 2], i.e. minimizing a function
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
测量误差不确定条件下恒定信号的自适应保证估计
条件下,测量误差,1,,k v k N的值是未知的(不受控制)。关于测量误差的先验信息是通过选择一个关于误差kv属性的假设来形式化的。以下假设是传统的。1. 测量误差k v是随机的,由已知参数的概率密度函数给出。2. 测量误差k v是不确定的量:k v v,其中v是它们可能值的给定凸集。接受关于测量误差的概率性质的假设,使得在随机方法的框架内将问题表述为在均方意义上寻找最优估计的问题并使用统计方法成为可能[2]。最常见的是使用最小二乘法(LS)[1,2],即最小化一个函数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Formalization of Basic Processes and Mathematical Model of the System for Monitoring and Analysis of Publications of Electronic Media Determination of the Parameters of the La¬mination of a Bimetallic Plate by Means of Active Thermal Non-Destructive Control Perm Region Natural Resource Potential Forecasting Using Machine Learning Models To the Question of Determining the Barometric Height by a Mechanical Altimeter and Air Signal System Formalism of Writing Out of Manipulators Dynamic Equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1