Characterizing the Impact of TCP Coexistence in Data Center Networks

Anirudh Ganji, Anandeshwar Singh, Muhammad Shahzad
{"title":"Characterizing the Impact of TCP Coexistence in Data Center Networks","authors":"Anirudh Ganji, Anandeshwar Singh, Muhammad Shahzad","doi":"10.1109/ICDCS47774.2020.00035","DOIUrl":null,"url":null,"abstract":"The switch fabrics of today’s data centers carry traffic controlled by a variety of TCP congestion control algorithms. This leads us to ask: how does the coexistence of multiple variants of TCP on shared switch fabric impacts the performance achieved by different applications in data centers? To answer this question, we conducted an extensive set of experiments with coexisting TCP variants on Leaf-Spine and Fat-Tree switch fabrics. We executed common data center workloads, which include streaming, MapReduce, and storage workloads, using four commonly used TCP variants, namely BBR, DCTCP, CUBIC, and New Reno. We also extensively executed iPerf workloads using these 4 TCP variants to purely study the impact of the coexistence of TCP variants on each other’s performance without incorporating the network behavior of the application layer. Our experiments resulted in a large set of network traces comprised of 160 billion packets (we will release these traces after publication of this work). We present comprehensive observations from these traces that have important implications in ensuring optimal utilization of data center switch fabric and in meeting the network performance needs of application layer workloads.","PeriodicalId":158630,"journal":{"name":"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS47774.2020.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The switch fabrics of today’s data centers carry traffic controlled by a variety of TCP congestion control algorithms. This leads us to ask: how does the coexistence of multiple variants of TCP on shared switch fabric impacts the performance achieved by different applications in data centers? To answer this question, we conducted an extensive set of experiments with coexisting TCP variants on Leaf-Spine and Fat-Tree switch fabrics. We executed common data center workloads, which include streaming, MapReduce, and storage workloads, using four commonly used TCP variants, namely BBR, DCTCP, CUBIC, and New Reno. We also extensively executed iPerf workloads using these 4 TCP variants to purely study the impact of the coexistence of TCP variants on each other’s performance without incorporating the network behavior of the application layer. Our experiments resulted in a large set of network traces comprised of 160 billion packets (we will release these traces after publication of this work). We present comprehensive observations from these traces that have important implications in ensuring optimal utilization of data center switch fabric and in meeting the network performance needs of application layer workloads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
描述TCP共存对数据中心网络的影响
当今数据中心的交换结构承载着由各种TCP拥塞控制算法控制的流量。这让我们不禁要问:在共享交换结构上共存的多种TCP变体如何影响数据中心中不同应用程序实现的性能?为了回答这个问题,我们对Leaf-Spine和Fat-Tree交换结构上共存的TCP变体进行了广泛的实验。我们执行常见的数据中心工作负载,包括流、MapReduce和存储工作负载,使用四种常用的TCP变体,即BBR、DCTCP、CUBIC和New Reno。我们还使用这4种TCP变体广泛执行iPerf工作负载,纯粹研究TCP变体共存对彼此性能的影响,而不考虑应用层的网络行为。我们的实验产生了一个由1600亿个数据包组成的大型网络轨迹集(我们将在本工作发表后发布这些轨迹)。我们从这些轨迹中提出了全面的观察结果,这些观察结果对于确保数据中心交换结构的最佳利用和满足应用层工作负载的网络性能需求具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Energy-Efficient Edge Offloading Scheme for UAV-Assisted Internet of Things Kill Two Birds with One Stone: Auto-tuning RocksDB for High Bandwidth and Low Latency BlueFi: Physical-layer Cross-Technology Communication from Bluetooth to WiFi [Title page i] Distributionally Robust Edge Learning with Dirichlet Process Prior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1