Manipulation of Microrobots using Chladni Plates and Multimode Membrane Resonators

Lillian N. Usadi, S. Firebaugh, H. Elbidweihy, S. Yee
{"title":"Manipulation of Microrobots using Chladni Plates and Multimode Membrane Resonators","authors":"Lillian N. Usadi, S. Firebaugh, H. Elbidweihy, S. Yee","doi":"10.3390/MICROMACHINES2021-09593","DOIUrl":null,"url":null,"abstract":"The advent of micro/nanorobotics promises to transform the physical, chemical, and biological domains by harnessing opportunities otherwise limited by size. Most notable is the biomedical field in which the ability to manipulate micro/nanoparticles has numerous applications in biophysics, drug delivery, tissue engineering, and microsurgery. \nAcoustics, the physics of vibrational waves through matter, offers a precise, accurate, and minimally invasive technique to manipulate microrobots or microparticles (stand-ins for microrobots). One example is through the use of flexural vibrations induced in resonant structures such as Chladni plates. \nIn this research, we developed a platform for precise two-dimensional microparticle manipulation via acoustic forces arising from Chladni figures and resonating microscale membranes. The project included two distinct phases: (1) macroscale manipulation with a Chladni plate in air and (2) microscale manipulation using microscale membranes in liquid. In the first phase (macroscale in air), we reproduced previous studies in order to gain a better understanding of the underlying physics and to develop control algorithms based on statistical modeling techniques. In the second phase (microscale in liquid), we developed and tested a new setup using custom microfabricated structures. The macroscale statistical modeling techniques were integrated with microscale autonomous control systems. It is shown that control methods developed on the macroscale can be implemented and used on the microscale with good precision and accuracy.","PeriodicalId":137788,"journal":{"name":"Proceedings of Micromachines 2021 — 1st International Conference on Micromachines and Applications (ICMA2021)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Micromachines 2021 — 1st International Conference on Micromachines and Applications (ICMA2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/MICROMACHINES2021-09593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The advent of micro/nanorobotics promises to transform the physical, chemical, and biological domains by harnessing opportunities otherwise limited by size. Most notable is the biomedical field in which the ability to manipulate micro/nanoparticles has numerous applications in biophysics, drug delivery, tissue engineering, and microsurgery. Acoustics, the physics of vibrational waves through matter, offers a precise, accurate, and minimally invasive technique to manipulate microrobots or microparticles (stand-ins for microrobots). One example is through the use of flexural vibrations induced in resonant structures such as Chladni plates. In this research, we developed a platform for precise two-dimensional microparticle manipulation via acoustic forces arising from Chladni figures and resonating microscale membranes. The project included two distinct phases: (1) macroscale manipulation with a Chladni plate in air and (2) microscale manipulation using microscale membranes in liquid. In the first phase (macroscale in air), we reproduced previous studies in order to gain a better understanding of the underlying physics and to develop control algorithms based on statistical modeling techniques. In the second phase (microscale in liquid), we developed and tested a new setup using custom microfabricated structures. The macroscale statistical modeling techniques were integrated with microscale autonomous control systems. It is shown that control methods developed on the macroscale can be implemented and used on the microscale with good precision and accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用Chladni板和多模膜谐振器操纵微型机器人
微/纳米机器人的出现有望通过利用其他受尺寸限制的机会来改变物理,化学和生物领域。最值得注意的是生物医学领域,操纵微/纳米颗粒的能力在生物物理学、药物输送、组织工程和显微外科等领域有许多应用。声学,即振动波穿过物质的物理学,提供了一种精确、准确、微创的技术来操纵微型机器人或微粒(微型机器人的替代品)。一个例子是通过在诸如克拉尼板之类的共振结构中使用引起的弯曲振动。在这项研究中,我们开发了一个平台,通过由克拉德尼图和共振微尺度膜产生的声力来精确地操纵二维微粒。该项目包括两个不同的阶段:(1)在空气中使用克拉尼板进行宏观操作;(2)在液体中使用微尺度膜进行微观操作。在第一阶段(空气中的宏观尺度),我们复制了以前的研究,以便更好地理解潜在的物理现象,并开发基于统计建模技术的控制算法。在第二阶段(液体微尺度),我们开发并测试了一种使用定制微加工结构的新装置。将宏观统计建模技术与微观自主控制系统相结合。结果表明,在宏观尺度上开发的控制方法可以在微观尺度上实现和使用,并且具有良好的精度和准确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nanoscopic Biosensors in Microfluidics Magneto-Catalytic Janus Micromotors for Selective Inactivation of Bacteria Biofilms Rapid lipid content screening in Neochloris Oleoabundans by carbon-based dielectrophoresis Lab-on-chip platform for on-field analysis of Grapevine leafroll-associated virus 3 Magnetically actuated glaucoma drainage device with adjustable flow properties after implantation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1