Comparative study of GA, PSO, and DE for tuning position domain PID controller

V. Pano, P. Ouyang
{"title":"Comparative study of GA, PSO, and DE for tuning position domain PID controller","authors":"V. Pano, P. Ouyang","doi":"10.1109/ROBIO.2014.7090505","DOIUrl":null,"url":null,"abstract":"Gain tuning is very important in order to obtain good performances for implementing a controller. In this paper, three popular evolutionary algorithms are utilized to optimize the control gains of a position domain PID controller for the improvement of contour tracking for robotic manipulators. Differential Evolution (DE), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to optimize the gains of the controller and three distinct fitness functions are also used to quantify the contour performance of each solution set. Simulation results show that PSO was proven to be quite efficient for the linear contour, while DE featured the highest performance for the nonlinear case. Both algorithms performed consistently better than GA that featured premature convergence in all cases.","PeriodicalId":289829,"journal":{"name":"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2014.7090505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Gain tuning is very important in order to obtain good performances for implementing a controller. In this paper, three popular evolutionary algorithms are utilized to optimize the control gains of a position domain PID controller for the improvement of contour tracking for robotic manipulators. Differential Evolution (DE), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to optimize the gains of the controller and three distinct fitness functions are also used to quantify the contour performance of each solution set. Simulation results show that PSO was proven to be quite efficient for the linear contour, while DE featured the highest performance for the nonlinear case. Both algorithms performed consistently better than GA that featured premature convergence in all cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
位置域PID控制器的遗传算法、粒子群算法和遗传算法的比较研究
增益调谐是实现控制器获得良好性能的关键。本文利用三种流行的进化算法对位置域PID控制器的控制增益进行优化,以改善机器人的轮廓跟踪能力。采用差分进化(DE)、遗传算法(GA)和粒子群优化(PSO)优化控制器增益,并采用三种不同的适应度函数来量化每个解集的轮廓性能。仿真结果表明,粒子群算法在处理线性轮廓时效率较高,而DE算法在处理非线性轮廓时效率最高。在所有情况下,这两种算法的表现都始终优于具有过早收敛特征的遗传算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Velocity field control with energy compensation toward therapeutic exercise A control-oriented model of underwater snake robots Quadrupedal locomotion based on a muscular activation pattern with stretch-reflex Novelty detection in user behavioural models within ambient assisted living applications: An experimental evaluation Simultaneous allocations of multiple tightly-coupled multi-robot tasks to coalitions of heterogeneous robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1