Random walks on graphs to model saliency in images

Viswanath Gopalakrishnan, Yiqun Hu, D. Rajan
{"title":"Random walks on graphs to model saliency in images","authors":"Viswanath Gopalakrishnan, Yiqun Hu, D. Rajan","doi":"10.1109/CVPR.2009.5206767","DOIUrl":null,"url":null,"abstract":"We formulate the problem of salient region detection in images as Markov random walks performed on images represented as graphs. While the global properties of the image are extracted from the random walk on a complete graph, the local properties are extracted from a k-regular graph. The most salient node is selected as the one which is globally most isolated but falls on a compact object. The equilibrium hitting times of the ergodic Markov chain holds the key for identifying the most salient node. The background nodes which are farthest from the most salient node are also identified based on the hitting times calculated from the random walk. Finally, a seeded salient region identification mechanism is developed to identify the salient parts of the image. The robustness of the proposed algorithm is objectively demonstrated with experiments carried out on a large image database annotated with “ground-truth” salient regions.","PeriodicalId":386532,"journal":{"name":"2009 IEEE Conference on Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"100","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2009.5206767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 100

Abstract

We formulate the problem of salient region detection in images as Markov random walks performed on images represented as graphs. While the global properties of the image are extracted from the random walk on a complete graph, the local properties are extracted from a k-regular graph. The most salient node is selected as the one which is globally most isolated but falls on a compact object. The equilibrium hitting times of the ergodic Markov chain holds the key for identifying the most salient node. The background nodes which are farthest from the most salient node are also identified based on the hitting times calculated from the random walk. Finally, a seeded salient region identification mechanism is developed to identify the salient parts of the image. The robustness of the proposed algorithm is objectively demonstrated with experiments carried out on a large image database annotated with “ground-truth” salient regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在图形上随机行走以模拟图像的显著性
我们将图像中的显著区域检测问题表述为对以图表示的图像执行的马尔可夫随机漫步。图像的全局属性是从完全图上的随机漫步中提取的,而局部属性是从k正则图中提取的。最显著的节点被选择为全局最孤立但落在紧凑对象上的节点。遍历马尔可夫链的平衡命中次数是识别最显著节点的关键。根据随机行走计算的命中次数,识别出距离最显著节点最远的背景节点。最后,提出了一种种子显著区域识别机制来识别图像的显著部分。通过在带有“ground-truth”显著区域标注的大型图像数据库上进行的实验,客观地证明了该算法的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On bias correction for geometric parameter estimation in computer vision Learning multi-modal densities on Discriminative Temporal Interaction Manifold for group activity recognition Nonrigid shape recovery by Gaussian process regression Combining powerful local and global statistics for texture description Observe locally, infer globally: A space-time MRF for detecting abnormal activities with incremental updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1