Generalization and improvement to PPM's "blending"

S. Bunton
{"title":"Generalization and improvement to PPM's \"blending\"","authors":"S. Bunton","doi":"10.1109/DCC.1997.582082","DOIUrl":null,"url":null,"abstract":"Summary form only given. The best-performing method in the data compression literature for computing probability estimates of sequences on-line using a suffix-tree model is the blending technique used by PPM. Blending can be viewed as a bottom-up recursive procedure for computing a mixture, barring one missing term for each level of the recursion, where a mixture is basically a weighted average of several probability estimates. The author shows the relative effectiveness of most combinations of mixture weighting functions and inheritance evaluation times. The results of a study on the value of using update exclusion, especially in models using state selection, are also sown.","PeriodicalId":403990,"journal":{"name":"Proceedings DCC '97. Data Compression Conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '97. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1997.582082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Summary form only given. The best-performing method in the data compression literature for computing probability estimates of sequences on-line using a suffix-tree model is the blending technique used by PPM. Blending can be viewed as a bottom-up recursive procedure for computing a mixture, barring one missing term for each level of the recursion, where a mixture is basically a weighted average of several probability estimates. The author shows the relative effectiveness of most combinations of mixture weighting functions and inheritance evaluation times. The results of a study on the value of using update exclusion, especially in models using state selection, are also sown.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PPM“混合”的推广与改进
只提供摘要形式。在使用后缀树模型在线计算序列概率估计的数据压缩文献中,性能最好的方法是PPM使用的混合技术。混合可以看作是计算混合的自下而上递归过程,除非递归的每一级都缺少一个项,其中混合基本上是几个概率估计的加权平均值。作者证明了大多数混合加权函数和继承评估次数组合的相对有效性。本文还对更新排除的应用价值,特别是在状态选择模型中的应用价值进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust image coding with perceptual-based scalability Image coding based on mixture modeling of wavelet coefficients and a fast estimation-quantization framework Region-based video coding with embedded zero-trees Progressive Ziv-Lempel encoding of synthetic images Compressing address trace data for cache simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1