Noise Prediction for Geocoding Queries using Word Geospatial Embedding and Bidirectional LSTM

Tin Vu, Solluna Liu, Renzhong Wang, Kumarswamy Valegerepura
{"title":"Noise Prediction for Geocoding Queries using Word Geospatial Embedding and Bidirectional LSTM","authors":"Tin Vu, Solluna Liu, Renzhong Wang, Kumarswamy Valegerepura","doi":"10.1145/3397536.3422201","DOIUrl":null,"url":null,"abstract":"User geocoding queries in map applications often contain noisy tokens such as typos in street, city name, wrong postal code, redundant words due to copy-paste action, etc. This issue becomes worse with the rapid growth of mobile devices, where errors from user input are inevitable. Such noisy tokens may fail the searching process if they are passed as-is to the downstream query processing components. In particular, there might be nothing or irrelevant results returned to the user. Therefore, noisy tokens in geocoding queries should be recognized and handled properly prior to the searching process. In this paper, a deep learning based noise prediction model for geocoding queries is proposed. It combines a novel Word Geospatial Embedding (WGE) and a Bidirectional LSTM based sequence tagging model. The proposed WGE is the first language model that allows geospatial semantics to be encoded into the vector representations. It allows geo-related machine learning/deep learning models making spatial-aware prediction.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

User geocoding queries in map applications often contain noisy tokens such as typos in street, city name, wrong postal code, redundant words due to copy-paste action, etc. This issue becomes worse with the rapid growth of mobile devices, where errors from user input are inevitable. Such noisy tokens may fail the searching process if they are passed as-is to the downstream query processing components. In particular, there might be nothing or irrelevant results returned to the user. Therefore, noisy tokens in geocoding queries should be recognized and handled properly prior to the searching process. In this paper, a deep learning based noise prediction model for geocoding queries is proposed. It combines a novel Word Geospatial Embedding (WGE) and a Bidirectional LSTM based sequence tagging model. The proposed WGE is the first language model that allows geospatial semantics to be encoded into the vector representations. It allows geo-related machine learning/deep learning models making spatial-aware prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于词地理空间嵌入和双向LSTM的地理编码查询噪声预测
地图应用程序中的用户地理编码查询通常包含嘈杂的标记,例如街道、城市名称、错误的邮政编码、由于复制粘贴操作而产生的冗余单词等。随着移动设备的快速发展,这个问题变得更加严重,因为用户输入的错误是不可避免的。如果按原样传递给下游查询处理组件,这些嘈杂的令牌可能会使搜索过程失败。特别是,可能没有任何结果或不相关的结果返回给用户。因此,在搜索过程之前,应该识别和处理地理编码查询中的噪声标记。提出了一种基于深度学习的地理编码查询噪声预测模型。它结合了一种新的词地理空间嵌入(WGE)和一种基于双向LSTM的序列标记模型。提出的WGE是第一个允许将地理空间语义编码到向量表示中的语言模型。它允许与地理相关的机器学习/深度学习模型进行空间感知预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poet Distributed Spatiotemporal Trajectory Query Processing in SQL A Time-Windowed Data Structure for Spatial Density Maps Distributed Spatial-Keyword kNN Monitoring for Location-aware Pub/Sub Platooning Graph for Safer Traffic Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1