Multi-model prediction for image set compression

Zhongbo Shi, Xiaoyan Sun, Feng Wu
{"title":"Multi-model prediction for image set compression","authors":"Zhongbo Shi, Xiaoyan Sun, Feng Wu","doi":"10.1109/VCIP.2013.6706334","DOIUrl":null,"url":null,"abstract":"The key task in image set compression is how to efficiently remove set redundancy among images and within a single image. In this paper, we propose the first multi-model prediction (MoP) method for image set compression to significantly reduce inter image redundancy. Unlike the previous prediction methods, our MoP enhances the correlation between images using feature-based geometric multi-model fitting. Based on estimated geometric models, multiple deformed prediction images are generated to reduce geometric distortions in different image regions. The block-based adaptive motion compensation is then adopted to further eliminate local variances. Experimental results demonstrate the advantage of our approach, especially for images with complicated scenes and geometric relationships.","PeriodicalId":407080,"journal":{"name":"2013 Visual Communications and Image Processing (VCIP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2013.6706334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The key task in image set compression is how to efficiently remove set redundancy among images and within a single image. In this paper, we propose the first multi-model prediction (MoP) method for image set compression to significantly reduce inter image redundancy. Unlike the previous prediction methods, our MoP enhances the correlation between images using feature-based geometric multi-model fitting. Based on estimated geometric models, multiple deformed prediction images are generated to reduce geometric distortions in different image regions. The block-based adaptive motion compensation is then adopted to further eliminate local variances. Experimental results demonstrate the advantage of our approach, especially for images with complicated scenes and geometric relationships.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像集压缩的多模型预测
图像集压缩的关键问题是如何有效地去除图像之间和单个图像内的集冗余。在本文中,我们提出了第一种用于图像集压缩的多模型预测(MoP)方法,以显着降低图像间冗余。与之前的预测方法不同,我们的MoP使用基于特征的几何多模型拟合来增强图像之间的相关性。基于估计的几何模型,生成多个变形预测图像,以减少不同图像区域的几何畸变。然后采用基于分块的自适应运动补偿进一步消除局部方差。实验结果证明了该方法的优越性,特别是对于具有复杂场景和几何关系的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New motherwavelet for pattern detection in IR image Improved disparity vector derivation in 3D-HEVC Learning non-negative locality-constrained Linear Coding for human action recognition Wavelet based smoke detection method with RGB Contrast-image and shape constrain Joint image denoising using self-similarity based low-rank approximations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1