Which cumulants should be selected for steering vector estimation?

T. Kaiser, J. Mendel
{"title":"Which cumulants should be selected for steering vector estimation?","authors":"T. Kaiser, J. Mendel","doi":"10.1109/HOST.1997.613531","DOIUrl":null,"url":null,"abstract":"Cumulants have been successfully applied in the area of narrowband array signal processing. This motivates a performance analysis to find out the strengths and the weaknesses of each new algorithm. Hitherto, most of the known performance analyses are based on the asymptotic covariance of sample cumulants and are therefore called asymptotic performance analyses. Recently, explicit formulas for the finite-sample covariances of second-, third-, and fourth-order sample cumulants for any kind of signal, any kind of noise, any array shape and arbitrary sensors have been derived. These formulas enable a finite-sample performance analysis. In the single source case the steering vector is proportional to a vector built up by a product of second-order cumulants or by fourth-order cumulants. This means that the finite-sample (co)variance of the steering vector can be investigated by using the formulas for the finite-sample covariance of the second- and fourth-order sample cumulant. Hence, the open question \"Which cumulants should be selected for steering vector estimation ?\"-is addressed in this paper.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cumulants have been successfully applied in the area of narrowband array signal processing. This motivates a performance analysis to find out the strengths and the weaknesses of each new algorithm. Hitherto, most of the known performance analyses are based on the asymptotic covariance of sample cumulants and are therefore called asymptotic performance analyses. Recently, explicit formulas for the finite-sample covariances of second-, third-, and fourth-order sample cumulants for any kind of signal, any kind of noise, any array shape and arbitrary sensors have been derived. These formulas enable a finite-sample performance analysis. In the single source case the steering vector is proportional to a vector built up by a product of second-order cumulants or by fourth-order cumulants. This means that the finite-sample (co)variance of the steering vector can be investigated by using the formulas for the finite-sample covariance of the second- and fourth-order sample cumulant. Hence, the open question "Which cumulants should be selected for steering vector estimation ?"-is addressed in this paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应该选择哪些累积量来进行转向矢量估计?
累积量已成功地应用于窄带阵列信号处理领域。这促使我们进行性能分析,找出每种新算法的优缺点。迄今为止,大多数已知的性能分析都是基于样本累积量的渐近协方差,因此被称为渐近性能分析。最近,对于任何类型的信号,任何类型的噪声,任何阵列形状和任意传感器,已经导出了二阶,三阶和四阶样本累积量的有限样本协方差的显式公式。这些公式使有限样本性能分析成为可能。在单源情况下,转向矢量与由二阶累积量或四阶累积量的乘积构成的矢量成正比。这意味着可以通过使用二阶和四阶样本累积量的有限样本协方差公式来研究转向矢量的有限样本(co)方差。因此,本文提出了一个开放的问题“应该选择哪些累积量来进行转向矢量估计?”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narrow band source separation in wide band context applications to array signal processing Higher-order statistics for tissue characterization from ultrasound images An iterative mixed norm image restoration algorithm Comparison between asymmetric generalized Gaussian (AGG) and symmetric-/spl alpha/-stable (S/spl alpha/S) noise models for signal estimation in non Gaussian environments Linear algebraic approaches for (almost) periodic moving average system identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1