Fatigue Fracture of a Carbon Steel Wiper Spring Because of Stress Concentration at a Sharp Corner

{"title":"Fatigue Fracture of a Carbon Steel Wiper Spring Because of Stress Concentration at a Sharp Corner","authors":"","doi":"10.31399/asm.fach.process.c0048150","DOIUrl":null,"url":null,"abstract":"\n Grease-wiper springs for cams formed from stampings of 0.25-mm thick carbon spring steel (0.65 to 0.80% C) fractured at the 0.025 mm radius on the stamped 135 deg corner at a 90 deg bend after 5,000,000 cycles. Tool marks 2 to 2.3 mm from the center of the stamped bend were disclosed by visual examination. Fatigue striations originating from cracks at the 0.025 mm radius inside corner at the bend were revealed by SEM of the fractured surface. The maximum stress at the bend, in stock of maximum thickness and as a function of the radius of the 135 deg corner, was indicated by stress calculations to be very close to the maximum allowable fluctuating stress for the material. The wiper springs were concluded to be fractured in fatigue and the cyclic loading resulted from cam rotation. The maximum applied stress approached the allowable limit due to high stress-concentration factor in the spring (caused by the very small inside radius). The corner radius was increased to 0.76 mm and the tools were re-polished to avoid tool marks.","PeriodicalId":294593,"journal":{"name":"ASM Failure Analysis Case Histories: Processing Errors and Defects","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Processing Errors and Defects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.process.c0048150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Grease-wiper springs for cams formed from stampings of 0.25-mm thick carbon spring steel (0.65 to 0.80% C) fractured at the 0.025 mm radius on the stamped 135 deg corner at a 90 deg bend after 5,000,000 cycles. Tool marks 2 to 2.3 mm from the center of the stamped bend were disclosed by visual examination. Fatigue striations originating from cracks at the 0.025 mm radius inside corner at the bend were revealed by SEM of the fractured surface. The maximum stress at the bend, in stock of maximum thickness and as a function of the radius of the 135 deg corner, was indicated by stress calculations to be very close to the maximum allowable fluctuating stress for the material. The wiper springs were concluded to be fractured in fatigue and the cyclic loading resulted from cam rotation. The maximum applied stress approached the allowable limit due to high stress-concentration factor in the spring (caused by the very small inside radius). The corner radius was increased to 0.76 mm and the tools were re-polished to avoid tool marks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳钢雨刮器弹簧尖角应力集中导致疲劳断裂
由0.25毫米厚碳素弹簧钢(0.65至0.80% C)冲压而成的凸轮刮油器弹簧,在经过500万次循环后,在90度弯曲处的135度角上,在0.025毫米半径处断裂。从冲压弯管中心2到2.3毫米的工具标记通过目视检查被发现。断裂表面扫描电镜显示,弯曲处0.025 mm半径内角处的裂纹产生疲劳条纹。在弯曲处的最大应力,在最大厚度的库存和作为135度角半径的函数,应力计算表明,非常接近材料的最大允许波动应力。分析认为雨刷弹簧在疲劳和凸轮旋转的循环载荷作用下发生断裂。由于弹簧的应力集中系数高(由很小的内半径引起),最大施加应力接近允许极限。将转角半径增加到0.76 mm,并重新抛光刀具以避免刀痕。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plating Blemishes in Zinc Die Castings Overload Failure of a Quench-Cracked AISI 4340 Steel Threaded Rod Fatigue Failure of Hydraulic Press Cylinders Cracked Pipe Elbow of a Hydraulic Installation Stress-Relief Cracking of a Welded Alloy Steel Tube
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1