{"title":"Off-grid Solar Photovoltaic BLDC motor Pumping Technology for Irrigation in Gaza Strip","authors":"K. Dawoud, A. M. Abu -Hudrouss","doi":"10.1109/ieCRES57315.2023.10209522","DOIUrl":null,"url":null,"abstract":"The deficit in supply and demand for energy is a chronic problem in Gaza Strip. This creates a challenge in fields at the border regions where grid electricity is inaccessible or unreliable. Consequently, farmers use conventional energy sources and traditional irrigation methods to pump the water from tanks, basin, or rain collection artificial lakes to irrigate the required field. Diesel engines are one of the methods that are used to power pumps at the border regions. However, it incurs high-cost, and frequent maintenance, and has a high carbon dioxide fingerprint. In remote areas of the Gaza Strip, solar photovoltaic (PV) water pumping has been proven to be more cost-effective than diesel water pumping. To replace a diesel engine with solar PV to power up the pumps is faced with the fact that most available and working pumps for irrigation in Gaza Strip are alternating current (AC) motor based which requires high initial torque to start rotating. This results that more PV panels are needed and suitable controller to power it up compared to the brushless DC (BLDC) motored pump. In this paper, we introduce an off-grid solar system for irrigation where BLDC motor pump is used and compared to an equivalent AC motor pump.","PeriodicalId":431920,"journal":{"name":"2023 8th International Engineering Conference on Renewable Energy & Sustainability (ieCRES)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th International Engineering Conference on Renewable Energy & Sustainability (ieCRES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ieCRES57315.2023.10209522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The deficit in supply and demand for energy is a chronic problem in Gaza Strip. This creates a challenge in fields at the border regions where grid electricity is inaccessible or unreliable. Consequently, farmers use conventional energy sources and traditional irrigation methods to pump the water from tanks, basin, or rain collection artificial lakes to irrigate the required field. Diesel engines are one of the methods that are used to power pumps at the border regions. However, it incurs high-cost, and frequent maintenance, and has a high carbon dioxide fingerprint. In remote areas of the Gaza Strip, solar photovoltaic (PV) water pumping has been proven to be more cost-effective than diesel water pumping. To replace a diesel engine with solar PV to power up the pumps is faced with the fact that most available and working pumps for irrigation in Gaza Strip are alternating current (AC) motor based which requires high initial torque to start rotating. This results that more PV panels are needed and suitable controller to power it up compared to the brushless DC (BLDC) motored pump. In this paper, we introduce an off-grid solar system for irrigation where BLDC motor pump is used and compared to an equivalent AC motor pump.