Mustafa Mohammadi Garasuie, M. Shabankhah, A. Kamandi
{"title":"Improving Hypergraph Attention and Hypergraph Convolution Networks","authors":"Mustafa Mohammadi Garasuie, M. Shabankhah, A. Kamandi","doi":"10.1109/IKT51791.2020.9345609","DOIUrl":null,"url":null,"abstract":"Graph Neural Networks (GNNs) are models that use the structure of graphs to better exploit the bilateral relationship between neighboring nodes. Some problems, however, require that we consider a more general relationship which involve not only two nodes but rather a group of nodes. This is the approach adopted in Hypergraph Convolution and Hypergraph Attention Networks (HGAT) [1]. In this paper, we first propose to incorporate a weight matrix into these networks which, as our experimentations show, can improve the performance of the models in question. The other novelty in our work is the introduction of self-loops in the graphs which again leads to slight improvements in the accuracy of our architecture(named iHGAN).","PeriodicalId":382725,"journal":{"name":"2020 11th International Conference on Information and Knowledge Technology (IKT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th International Conference on Information and Knowledge Technology (IKT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IKT51791.2020.9345609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Graph Neural Networks (GNNs) are models that use the structure of graphs to better exploit the bilateral relationship between neighboring nodes. Some problems, however, require that we consider a more general relationship which involve not only two nodes but rather a group of nodes. This is the approach adopted in Hypergraph Convolution and Hypergraph Attention Networks (HGAT) [1]. In this paper, we first propose to incorporate a weight matrix into these networks which, as our experimentations show, can improve the performance of the models in question. The other novelty in our work is the introduction of self-loops in the graphs which again leads to slight improvements in the accuracy of our architecture(named iHGAN).