A probabilistic technique for full-chip leakage estimation

Shaobo Liu, Qinru Qiu, Qing Wu
{"title":"A probabilistic technique for full-chip leakage estimation","authors":"Shaobo Liu, Qinru Qiu, Qing Wu","doi":"10.1145/1393921.1393975","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a probability-based algorithm to estimate full-chip leakage without knowing layout information, under intra-die and inter-die process variations. Through modeling process variations into a random vector, we show that the standard cell leakage can be modeled as an inverse Gaussian random variable and further demonstrate that full-chip leakage can also be approximated to be an inverse Gaussian random variable. Hence, the leakage estimation problem is reduced to the estimation of the mean value and variance of the full-chip leakage. Experimental results show that the proposed algorithm is over 1000X faster than Monte Carlo simulation while the maximum estimation error is less than 6%.","PeriodicalId":166672,"journal":{"name":"Proceeding of the 13th international symposium on Low power electronics and design (ISLPED '08)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the 13th international symposium on Low power electronics and design (ISLPED '08)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1393921.1393975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we propose a probability-based algorithm to estimate full-chip leakage without knowing layout information, under intra-die and inter-die process variations. Through modeling process variations into a random vector, we show that the standard cell leakage can be modeled as an inverse Gaussian random variable and further demonstrate that full-chip leakage can also be approximated to be an inverse Gaussian random variable. Hence, the leakage estimation problem is reduced to the estimation of the mean value and variance of the full-chip leakage. Experimental results show that the proposed algorithm is over 1000X faster than Monte Carlo simulation while the maximum estimation error is less than 6%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全芯片泄漏估计的概率技术
在本文中,我们提出了一种基于概率的算法,在不知道布局信息的情况下,在模内和模间工艺变化下估计全芯片泄漏。通过将过程变化建模为一个随机向量,我们证明了标准单元泄漏可以建模为一个逆高斯随机变量,进一步证明了全芯片泄漏也可以近似为一个逆高斯随机变量。因此,泄漏估计问题被简化为全芯片泄漏的均值和方差的估计。实验结果表明,该算法比蒙特卡罗模拟快1000倍以上,最大估计误差小于6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Caching for bursts (C-Burst): let hard disks sleep well and work energetically Increasing minimum operating voltage (VDDmin) with number of CMOS logic gates and experimental verification with up to 1Mega-stage ring oscillators Advances in low power verification Low-power high-accuracy timing systems for efficient duty cycling Lazy instruction scheduling: keeping performance, reducing power
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1