Control of Battery Storage Systems in Residential Grids: Model-based vs. Data-Driven Approaches

S. Sajjadi, N. Bazmohammadi, A. Amani, M. Jalili, J. Guerrero, Xinghuo Yu
{"title":"Control of Battery Storage Systems in Residential Grids: Model-based vs. Data-Driven Approaches","authors":"S. Sajjadi, N. Bazmohammadi, A. Amani, M. Jalili, J. Guerrero, Xinghuo Yu","doi":"10.1109/INDIN51773.2022.9976136","DOIUrl":null,"url":null,"abstract":"In this paper, control of Battery Storage Systems (BSS) in power distribution grids with residential consumers as well as prosumers equipped with rooftop photovoltaic (PV) solar panels and Electric Vehicles (EV) is addressed. Different features of these Distributed Energy Resources (DERs), such as intermittent behaviour and the difference between the maximum generation time and the maximum demand, have caused several issues for electricity distributors in delivering high quality power. Smart control and scheduling of ESS and EVs is a promising approach to protect the grid against extra power injection from prosumers during day times while the benefit of household owners from DERs are still achieved. In this context, the performance of model-based controllers such as model predictive controllers (MPC) is compared with model-free data driven controllers (DDC) considering different complex scenarios that may happen in a distribution grid. The control objective is to minimize the difference between the net power exchanged with the main grid from the estimated average net load of prosumers. Our study on the real consumption data of about 40 residential consumers/prosumers in Victoria, Australia, demonstrates the strength of data-driven control approaches to deal with the complex environment of power distribution grids in the presence of DERs.","PeriodicalId":359190,"journal":{"name":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51773.2022.9976136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, control of Battery Storage Systems (BSS) in power distribution grids with residential consumers as well as prosumers equipped with rooftop photovoltaic (PV) solar panels and Electric Vehicles (EV) is addressed. Different features of these Distributed Energy Resources (DERs), such as intermittent behaviour and the difference between the maximum generation time and the maximum demand, have caused several issues for electricity distributors in delivering high quality power. Smart control and scheduling of ESS and EVs is a promising approach to protect the grid against extra power injection from prosumers during day times while the benefit of household owners from DERs are still achieved. In this context, the performance of model-based controllers such as model predictive controllers (MPC) is compared with model-free data driven controllers (DDC) considering different complex scenarios that may happen in a distribution grid. The control objective is to minimize the difference between the net power exchanged with the main grid from the estimated average net load of prosumers. Our study on the real consumption data of about 40 residential consumers/prosumers in Victoria, Australia, demonstrates the strength of data-driven control approaches to deal with the complex environment of power distribution grids in the presence of DERs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
住宅电网中电池存储系统的控制:基于模型与数据驱动的方法
本文讨论了住宅用户、安装了屋顶光伏(PV)太阳能电池板和电动汽车(EV)的产消用户配电网中电池储能系统(BSS)的控制问题。这些分布式能源(DERs)的不同特征,例如间歇性行为以及最大发电时间和最大需求之间的差异,给电力分销商在提供高质量电力方面带来了几个问题。ESS和电动汽车的智能控制和调度是一种很有前途的方法,可以保护电网在白天免受产消者额外的电力注入,同时仍然可以实现家庭业主从DERs中获益。在此背景下,考虑配电网中可能发生的不同复杂场景,比较了基于模型的控制器(如模型预测控制器(MPC))与无模型数据驱动控制器(DDC)的性能。控制目标是最小化与主电网交换的净功率与产消者估计的平均净负荷之间的差异。我们对澳大利亚维多利亚州约40个住宅消费者/生产消费者的真实消费数据进行了研究,证明了数据驱动控制方法在处理存在DERs的配电网络复杂环境中的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sentiment Analysis of Board Secretaries’ Q&R Data Offset Estimation Based on ARIMA-LSTM for Time Synchronization in Single Twisted Pair Ethernet Dynamic Task Offloading Approach for Task Delay Reduction in the IoT-enabled Fog Computing Systems Fuzzy PID Control for Multi-joint Robotic Arm Graph Attention Network for Financial Aspect-based Sentiment Classification with Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1