Convolutional Neural Networks Based Classifier for Diabetic Retinopathy

A. K. Kumar, A. Udhayakumar, K. Kalaiselvi
{"title":"Convolutional Neural Networks Based Classifier for Diabetic Retinopathy","authors":"A. K. Kumar, A. Udhayakumar, K. Kalaiselvi","doi":"10.1166/jmihi.2022.3932","DOIUrl":null,"url":null,"abstract":"Diabetic Retinopathy (DR) is a consequence of diabetes which causes damage to the retinal blood vessel networks. In most diabetics, this is a major vision-threatening problem. Color fundus pictures are used to diagnose DR, which requires competent doctors to determine lesions presence.\n The job of detecting DR in an automated manner is difficult. In terms of automated illness identification, feature extraction is quite useful. In the current setting, Convolutional Neural Networks (CNN) outperforms prior handcrafted feature-based image classification approaches in terms of\n image classification efficiency. This paper introduces CNN structure for extracting characteristics from retinal fundus pictures in order to develop the accuracy of classification. This proposed method, the output features of CNN are employed as input to many classifiers of machine learning.\n Using images from the MESSIDOR datasets, this method is tested under Random Tree, Hoeffiding Tree and Random Forest classifiers. Accuracy, False Positive Rate (FPR), Precision, Recall, F-1 score, specificity and Kappa-score for used classifiers are compared to find out the efficiency of the\n classifier. For the MESSIDOR datasets, the suggested feature extraction approach combined with the Random forest classifier surpasses all other classifiers which gains 88% and 0.7288 of average accuracy and Kappa-score (k-score) respectively.","PeriodicalId":393031,"journal":{"name":"J. Medical Imaging Health Informatics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Medical Imaging Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jmihi.2022.3932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic Retinopathy (DR) is a consequence of diabetes which causes damage to the retinal blood vessel networks. In most diabetics, this is a major vision-threatening problem. Color fundus pictures are used to diagnose DR, which requires competent doctors to determine lesions presence. The job of detecting DR in an automated manner is difficult. In terms of automated illness identification, feature extraction is quite useful. In the current setting, Convolutional Neural Networks (CNN) outperforms prior handcrafted feature-based image classification approaches in terms of image classification efficiency. This paper introduces CNN structure for extracting characteristics from retinal fundus pictures in order to develop the accuracy of classification. This proposed method, the output features of CNN are employed as input to many classifiers of machine learning. Using images from the MESSIDOR datasets, this method is tested under Random Tree, Hoeffiding Tree and Random Forest classifiers. Accuracy, False Positive Rate (FPR), Precision, Recall, F-1 score, specificity and Kappa-score for used classifiers are compared to find out the efficiency of the classifier. For the MESSIDOR datasets, the suggested feature extraction approach combined with the Random forest classifier surpasses all other classifiers which gains 88% and 0.7288 of average accuracy and Kappa-score (k-score) respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的糖尿病视网膜病变分类器
糖尿病视网膜病变(DR)是糖尿病引起视网膜血管网络损伤的一种后果。在大多数糖尿病患者中,这是一个主要的视力威胁问题。彩色眼底图片用于诊断DR,这需要有能力的医生来确定病变的存在。以自动化的方式检测灾难是很困难的。在疾病自动识别方面,特征提取是非常有用的。在目前的情况下,卷积神经网络(CNN)在图像分类效率方面优于先前手工制作的基于特征的图像分类方法。本文引入CNN结构对眼底图像进行特征提取,以提高分类精度。该方法将CNN的输出特征作为机器学习分类器的输入。使用MESSIDOR数据集的图像,在随机树、hoeffding树和随机森林分类器下对该方法进行了测试。比较所使用分类器的准确率、假阳性率(FPR)、精密度、召回率、F-1评分、特异性和kappa评分,以了解分类器的效率。对于MESSIDOR数据集,结合随机森林分类器的特征提取方法优于所有其他分类器,其平均准确率和k-score (k-score)分别达到88%和0.7288。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application Value of CT Perfusion Imaging in Patients with Posterior Circulation Hyperacute Cerebral Infarction An Operative Acute Brain Tumor Recognition by Jointure Inward Unswerving Probabilistic Neural Network Classifier Making Semi-Automatic Segmentation Method to be Automatic Using Deep Learning for Biventricular Segmentation Improved Wavelet Filter Bank Selection for Effective Feature Extraction in Alzheimer Classification An Efficient Approach to Detect Meningioma Brain Tumor Using Adaptive Neuro Fuzzy Inference System Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1