{"title":"Scheduling Live-Migrations for Fast, Adaptable and Energy-Efficient Relocation Operations","authors":"Vincent Kherbache, E. Madelaine, Fabien Hermenier","doi":"10.1109/UCC.2015.37","DOIUrl":null,"url":null,"abstract":"Every day, numerous VMs are migrated inside a datacenter to balance the load, save energy or prepare production servers for maintenance. Despite VM placement problems are carefully studied, the underlying migration scheduler rely on vague adhoc models. This leads to unnecessarily long and energy-intensive migrations. We present mVM, a new and extensible migration scheduler. mVM takes into account the VM memory workload and the network topology to estimate precisely the migration duration and take wiser scheduling decisions. mVM is implemented as a plugin of BtrPlace and can be customized with additional scheduling constraints to finely control the migrations. Experiments on a real testbed show mVM outperforms schedulers that cap the migration parallelism by a constant to reduce the completion time. Besides an optimal capping, mVM reduces the migration duration by 20.4% on average and the completion time by 28.1%. In a maintenance operation involving 96 VMs to migrate between 72 servers, mVM saves 21.5% Joules against BtrPlace. Finally, its current library of 6 constraints allows administrators to address temporal and energy concerns, for example to adapt the schedule and fit a power budget.","PeriodicalId":381279,"journal":{"name":"2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCC.2015.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Every day, numerous VMs are migrated inside a datacenter to balance the load, save energy or prepare production servers for maintenance. Despite VM placement problems are carefully studied, the underlying migration scheduler rely on vague adhoc models. This leads to unnecessarily long and energy-intensive migrations. We present mVM, a new and extensible migration scheduler. mVM takes into account the VM memory workload and the network topology to estimate precisely the migration duration and take wiser scheduling decisions. mVM is implemented as a plugin of BtrPlace and can be customized with additional scheduling constraints to finely control the migrations. Experiments on a real testbed show mVM outperforms schedulers that cap the migration parallelism by a constant to reduce the completion time. Besides an optimal capping, mVM reduces the migration duration by 20.4% on average and the completion time by 28.1%. In a maintenance operation involving 96 VMs to migrate between 72 servers, mVM saves 21.5% Joules against BtrPlace. Finally, its current library of 6 constraints allows administrators to address temporal and energy concerns, for example to adapt the schedule and fit a power budget.