Active learning for Bayesian network models of biological networks using structure priors

Antti Larjo, H. Lähdesmäki
{"title":"Active learning for Bayesian network models of biological networks using structure priors","authors":"Antti Larjo, H. Lähdesmäki","doi":"10.1109/GENSIPS.2013.6735937","DOIUrl":null,"url":null,"abstract":"Active learning methods aim at identifying measurements that should be done in order to benefit a learning problem maximally. We use Bayesian networks as models of biological systems and show how active learning can be used to select new measurements to be incorporated via structure priors. Improved performance of the methods is demonstrated with both simulated and real datasets.","PeriodicalId":336511,"journal":{"name":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSIPS.2013.6735937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Active learning methods aim at identifying measurements that should be done in order to benefit a learning problem maximally. We use Bayesian networks as models of biological systems and show how active learning can be used to select new measurements to be incorporated via structure priors. Improved performance of the methods is demonstrated with both simulated and real datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于结构先验的生物网络贝叶斯网络模型主动学习
主动学习方法的目的是确定应该采取的措施,以便最大限度地使学习问题受益。我们使用贝叶斯网络作为生物系统的模型,并展示了主动学习如何通过结构先验来选择新的测量值。通过仿真和实际数据集验证了该方法的改进性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compromised intervention policies for phenotype alteration SeqBBS: A change-point model based algorithm and R package for searching CNV regions via the ratio of sequencing reads Optimal Bayesian MMSE estimation of the coefficient of determination for discrete prediction Boolean model to experimental validation: A preliminary attempt Inference of genetic regulatory networks with unknown covariance structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1