Nonparametric analysis of replicated microarray experiments

A. Gannoun, J. Saracco, W. Urfer, G. Bonney
{"title":"Nonparametric analysis of replicated microarray experiments","authors":"A. Gannoun, J. Saracco, W. Urfer, G. Bonney","doi":"10.1191/1471082X04st073oa","DOIUrl":null,"url":null,"abstract":"Microarrays are part of a new class of biotechnologies, which allow the monitoring of expression levels of thousands of genes simultaneously. In microarray data analysis, the comparison of gene expression profiles with respect to different conditions and the selection of biologically interesting genes are crucial tasks. Multivariate statistical methods have been applied to analyze these large data sets. To identify genes with altered expression under two experimental conditions, we propose a nonparametric statistical approach. Specifically, we propose estimating the distributions of a t-type statistic and its null statistic, using kernel methods. A comparison of these two distributions by means of a likelihood ratio test can identify genes with significantly changed expressions. A new method to provide more stable estimates of tail probabilities is proposed, as well as a method for the calculation of the cut-off point and the acceptance region. The methodology is applied to a leukaemia data set containing expression levels of 7129 genes, and is compared with normal mixture model and the traditional t-test.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X04st073oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Microarrays are part of a new class of biotechnologies, which allow the monitoring of expression levels of thousands of genes simultaneously. In microarray data analysis, the comparison of gene expression profiles with respect to different conditions and the selection of biologically interesting genes are crucial tasks. Multivariate statistical methods have been applied to analyze these large data sets. To identify genes with altered expression under two experimental conditions, we propose a nonparametric statistical approach. Specifically, we propose estimating the distributions of a t-type statistic and its null statistic, using kernel methods. A comparison of these two distributions by means of a likelihood ratio test can identify genes with significantly changed expressions. A new method to provide more stable estimates of tail probabilities is proposed, as well as a method for the calculation of the cut-off point and the acceptance region. The methodology is applied to a leukaemia data set containing expression levels of 7129 genes, and is compared with normal mixture model and the traditional t-test.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重复微阵列实验的非参数分析
微阵列是一类新型生物技术的一部分,它可以同时监测数千个基因的表达水平。在微阵列数据分析中,比较不同条件下的基因表达谱和选择生物学上感兴趣的基因是至关重要的任务。多元统计方法已被应用于分析这些大数据集。为了鉴定在两种实验条件下表达改变的基因,我们提出了一种非参数统计方法。具体来说,我们提出使用核方法估计t型统计量及其零统计量的分布。通过似然比检验对这两种分布进行比较,可以识别出表达有显著变化的基因。提出了一种提供更稳定的尾概率估计的新方法,以及截断点和可接受区域的计算方法。将该方法应用于包含7129个基因表达水平的白血病数据集,并与正常混合模型和传统t检验进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1