A Protocol for Privately Reporting Ad Impressions at Scale

M. Green, Watson Ladd, Ian Miers
{"title":"A Protocol for Privately Reporting Ad Impressions at Scale","authors":"M. Green, Watson Ladd, Ian Miers","doi":"10.1145/2976749.2978407","DOIUrl":null,"url":null,"abstract":"We present a protocol to enable privacy preserving advertising reporting at scale. Unlike previous systems, our work scales to millions of users and tens of thousands of distinct ads. Our approach builds on the homomorphic encryption approach proposed by Adnostic, but uses new cryptographic proof techniques to efficiently report billions of ad impressions a day using an additively homomorphic voting schemes. Most importantly, our protocol scales without imposing high loads on trusted third parties. Finally, we investigate a cost effective method to privately deliver ads with computational private information retrieval.","PeriodicalId":432261,"journal":{"name":"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2976749.2978407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

We present a protocol to enable privacy preserving advertising reporting at scale. Unlike previous systems, our work scales to millions of users and tens of thousands of distinct ads. Our approach builds on the homomorphic encryption approach proposed by Adnostic, but uses new cryptographic proof techniques to efficiently report billions of ad impressions a day using an additively homomorphic voting schemes. Most importantly, our protocol scales without imposing high loads on trusted third parties. Finally, we investigate a cost effective method to privately deliver ads with computational private information retrieval.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模私下报告广告印象的协议
我们提出了一个协议,使隐私保护的广告报告规模。与以前的系统不同,我们的工作扩展到数百万用户和数万个不同的广告。我们的方法建立在Adnostic提出的同态加密方法的基础上,但使用新的加密证明技术,使用加法同态投票方案有效地报告每天数十亿的广告印象。最重要的是,我们的协议在扩展时不会对受信任的第三方施加高负载。最后,我们研究了一种具有成本效益的基于计算私有信息检索的私有广告投放方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
∑oφoς: Forward Secure Searchable Encryption Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition Message-Recovery Attacks on Feistel-Based Format Preserving Encryption iLock: Immediate and Automatic Locking of Mobile Devices against Data Theft Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1