Data Migration for Large Scientific Datasets in Clouds

Á. Hajnal, E. Nagy, P. Kacsuk, I. Márton
{"title":"Data Migration for Large Scientific Datasets in Clouds","authors":"Á. Hajnal, E. Nagy, P. Kacsuk, I. Márton","doi":"10.32010/26166127.2018.1.1.66.86","DOIUrl":null,"url":null,"abstract":"1Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI), Budapest, Hungary, akos.hajnal@sztaki.mta.hu, eniko.nagy@sztaki.mta.hu, peter.kacsuk@sztaki.mta.hu *Correspondence: Peter Kacsuk, nstitute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI), Budapest, Hungary, peter.kacsuk@ sztaki.mta.hu Abstract Transferring large data files between various storages including cloud storages is an important task both for academic and commercial users. This should be done in an efficient and secure way. The paper describes Data Avenue that fulfills all these conditions. Data Avenue can efficiently transfer large files even in the range of TerraBytes among storages having very different access protocols (Amazon S3, OpenStack Swift, SFTP, SRM, iRODS, etc.). It can be used in personal, organizational and public deployment with all the security mechanisms required for these usage configurations. Data Avenue can be used by a GUI as well as by a REST API. The papers describes in detail all these features and usage modes of Data Avenue and also provides performance measurement results proving the efficiency of the tool that can be accessed and used via several public web pages.","PeriodicalId":275688,"journal":{"name":"Azerbaijan Journal of High Performance Computing","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Azerbaijan Journal of High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32010/26166127.2018.1.1.66.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

1Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI), Budapest, Hungary, akos.hajnal@sztaki.mta.hu, eniko.nagy@sztaki.mta.hu, peter.kacsuk@sztaki.mta.hu *Correspondence: Peter Kacsuk, nstitute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI), Budapest, Hungary, peter.kacsuk@ sztaki.mta.hu Abstract Transferring large data files between various storages including cloud storages is an important task both for academic and commercial users. This should be done in an efficient and secure way. The paper describes Data Avenue that fulfills all these conditions. Data Avenue can efficiently transfer large files even in the range of TerraBytes among storages having very different access protocols (Amazon S3, OpenStack Swift, SFTP, SRM, iRODS, etc.). It can be used in personal, organizational and public deployment with all the security mechanisms required for these usage configurations. Data Avenue can be used by a GUI as well as by a REST API. The papers describes in detail all these features and usage modes of Data Avenue and also provides performance measurement results proving the efficiency of the tool that can be accessed and used via several public web pages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
云环境下大型科学数据集的数据迁移
1匈牙利科学院计算机科学与控制研究所(MTA SZTAKI),匈牙利布达佩斯,akos.hajnal@sztaki.mta.hu, eniko.nagy@sztaki.mta.hu, peter.kacsuk@sztaki.mta.hu *通讯:匈牙利科学院计算机科学与控制研究所Peter Kacsuk,匈牙利布达佩斯,Peter。摘要在各种存储(包括云存储)之间传输大数据文件是学术和商业用户的重要任务。这应该以一种有效和安全的方式进行。本文描述了满足所有这些条件的数据大道。Data Avenue可以在具有不同访问协议(Amazon S3, OpenStack Swift, SFTP, SRM, iRODS等)的存储之间有效地传输大文件,甚至在tb范围内。它可以在个人、组织和公共部署中使用,并具有这些使用配置所需的所有安全机制。Data Avenue既可以由GUI使用,也可以由REST API使用。本文详细描述了数据大道的所有这些功能和使用模式,并提供了性能测量结果,证明了该工具的效率,该工具可以通过几个公共网页访问和使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A UNIFIED PARADIGM OF CLASSIFYING GI TRACT DISEASES IN ENDOSCOPY IMAGES USING MULTIPLE FEATURES FUSION RESEARCH ON DATABASE TYPES AND METHODS TO STANDARDIZE DATABASE TYPES IN THE FIELD OF TRANSPORT INFRASTRUCTURE TRAFFIC FLOW PREDICTION BASED ON VANET DATA BY COMBINING ARTIFICIAL NEURAL NETWORK AND GENETIC ALGORITHM DIRECT MODEL REFERENCE TAKAGI–SUGENO FUZZY CONTROL OF SISO NONLINEAR SYSTEMS DESIGN BY MEMBERSHIP FUNCTION RESOURCE DISCOVERY IN DISTRIBUTED EXASCALE SYSTEMS USING A MULTI-AGENT MODEL: CATEGORIZATION OF AGENTS BASED ON THEIR CHARACTERISTICS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1