Vispedia: on-demand data integration for interactive visualization and exploration

Bryan Chan, Justin Talbot, Leslie Wu, Nathan Sakunkoo, Mike Cammarano, P. Hanrahan
{"title":"Vispedia: on-demand data integration for interactive visualization and exploration","authors":"Bryan Chan, Justin Talbot, Leslie Wu, Nathan Sakunkoo, Mike Cammarano, P. Hanrahan","doi":"10.1145/1559845.1560003","DOIUrl":null,"url":null,"abstract":"Wikipedia is an example of the large, collaborative, semi-structured data sets emerging on the Web. Typically, before these data sets can be used, they must transformed into structured tables via data integration. We present Vispedia, a Web-based visualization system which incorporates data integration into an iterative, interactive data exploration and analysis process. This reduces the upfront cost of using heterogeneous data sets like Wikipedia. Vispedia is driven by a keyword-query-based integration interface implemented using a fast graph search. The search occurs interactively over DBpedia's semantic graph of Wikipedia, without depending on the existence of a structured ontology. This combination of data integration and visualization enables a broad class of non-expert users to more effectively use the semi-structured data available on the Web.","PeriodicalId":344093,"journal":{"name":"Proceedings of the 2009 ACM SIGMOD International Conference on Management of data","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2009 ACM SIGMOD International Conference on Management of data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1559845.1560003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Wikipedia is an example of the large, collaborative, semi-structured data sets emerging on the Web. Typically, before these data sets can be used, they must transformed into structured tables via data integration. We present Vispedia, a Web-based visualization system which incorporates data integration into an iterative, interactive data exploration and analysis process. This reduces the upfront cost of using heterogeneous data sets like Wikipedia. Vispedia is driven by a keyword-query-based integration interface implemented using a fast graph search. The search occurs interactively over DBpedia's semantic graph of Wikipedia, without depending on the existence of a structured ontology. This combination of data integration and visualization enables a broad class of non-expert users to more effectively use the semi-structured data available on the Web.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vispedia:用于交互式可视化和探索的按需数据集成
维基百科是网络上出现的大型、协作、半结构化数据集的一个例子。通常,在使用这些数据集之前,必须通过数据集成将它们转换为结构化表。我们介绍了Vispedia,一个基于web的可视化系统,它将数据集成到一个迭代的、交互式的数据探索和分析过程中。这减少了使用维基百科等异构数据集的前期成本。Vispedia是由一个基于关键字查询的集成接口驱动的,该接口使用快速图形搜索实现。搜索以交互方式在DBpedia的维基百科语义图上进行,而不依赖于结构化本体的存在。这种数据集成和可视化的结合使广泛的非专业用户能够更有效地使用Web上可用的半结构化数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-tier, label-based security enforcement for web applications Estimating the confidence of conditional functional dependencies Session details: Research session 15: nearest neighbor search Session details: Research session 8: column stores Incremental maintenance of length normalized indexes for approximate string matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1