Mitchell Olsthoorn, A. van Deursen, Annibale Panichella
{"title":"Guiding Automated Test Case Generation for Transaction-Reverting Statements in Smart Contracts","authors":"Mitchell Olsthoorn, A. van Deursen, Annibale Panichella","doi":"10.1109/ICSME55016.2022.00023","DOIUrl":null,"url":null,"abstract":"Transaction-reverting statements are key constructs within Solidity that are extensively used for authority and validity checks. Current state-of-the-art search-based testing and fuzzing approaches do not explicitly handle these statements and therefore can not effectively detect security vulnerabilities. In this paper, we argue that it is critical to directly handle and test these statements to assess that they correctly protect the contracts against invalid requests. To this aim, we propose a new approach that improves the search guidance for these transaction-reverting statements based on interprocedural control dependency analysis, in addition to the traditional coverage criteria. We assess the benefits of our approach by performing an empirical study on 100 smart contracts w.r.t. transaction-reverting statement coverage and vulnerability detection capability. Our results show that the proposed approach can improve the performance of Dy-naMOSA, the state-of-the-art algorithm for test case generation. On average, we improve transaction-reverting statement coverage by 14 % (up to 35 %), line coverage by 8 % (up to 32 %), and vulnerability-detection capability by 17 % (up to 50 %).","PeriodicalId":300084,"journal":{"name":"2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSME55016.2022.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Transaction-reverting statements are key constructs within Solidity that are extensively used for authority and validity checks. Current state-of-the-art search-based testing and fuzzing approaches do not explicitly handle these statements and therefore can not effectively detect security vulnerabilities. In this paper, we argue that it is critical to directly handle and test these statements to assess that they correctly protect the contracts against invalid requests. To this aim, we propose a new approach that improves the search guidance for these transaction-reverting statements based on interprocedural control dependency analysis, in addition to the traditional coverage criteria. We assess the benefits of our approach by performing an empirical study on 100 smart contracts w.r.t. transaction-reverting statement coverage and vulnerability detection capability. Our results show that the proposed approach can improve the performance of Dy-naMOSA, the state-of-the-art algorithm for test case generation. On average, we improve transaction-reverting statement coverage by 14 % (up to 35 %), line coverage by 8 % (up to 32 %), and vulnerability-detection capability by 17 % (up to 50 %).