Multi-head Variational Graph Autoencoder Constrained by Sum-product Networks

Riting Xia, Yan Zhang, Chunxu Zhang, Xueyan Liu, Bo Yang
{"title":"Multi-head Variational Graph Autoencoder Constrained by Sum-product Networks","authors":"Riting Xia, Yan Zhang, Chunxu Zhang, Xueyan Liu, Bo Yang","doi":"10.1145/3543507.3583517","DOIUrl":null,"url":null,"abstract":"Variational graph autoencoder (VGAE) is a promising deep probabilistic model in graph representation learning. However, most existing VGAEs adopt the mean-field assumption, and cannot characterize the graphs with noise well. In this paper, we propose a novel deep probabilistic model for graph analysis, termed Multi-head Variational Graph Autoencoder Constrained by Sum-product Networks (named SPN-MVGAE), which helps to relax the mean-field assumption and learns better latent representation with fault tolerance. Our proposed model SPN-MVGAE uses conditional sum-product networks as constraints to learn the dependencies between latent factors in an end-to-end manner. Furthermore, we introduce the superposition of the latent representations learned by multiple variational networks to represent the final latent representations of nodes. Our model is the first use sum-product networks for graph representation learning, extending the scope of sum-product networks applications. Experimental results show that compared with other baseline methods, our model has competitive advantages in link prediction, fault tolerance, node classification, and graph visualization on real datasets.","PeriodicalId":296351,"journal":{"name":"Proceedings of the ACM Web Conference 2023","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Web Conference 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543507.3583517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Variational graph autoencoder (VGAE) is a promising deep probabilistic model in graph representation learning. However, most existing VGAEs adopt the mean-field assumption, and cannot characterize the graphs with noise well. In this paper, we propose a novel deep probabilistic model for graph analysis, termed Multi-head Variational Graph Autoencoder Constrained by Sum-product Networks (named SPN-MVGAE), which helps to relax the mean-field assumption and learns better latent representation with fault tolerance. Our proposed model SPN-MVGAE uses conditional sum-product networks as constraints to learn the dependencies between latent factors in an end-to-end manner. Furthermore, we introduce the superposition of the latent representations learned by multiple variational networks to represent the final latent representations of nodes. Our model is the first use sum-product networks for graph representation learning, extending the scope of sum-product networks applications. Experimental results show that compared with other baseline methods, our model has competitive advantages in link prediction, fault tolerance, node classification, and graph visualization on real datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
和积网络约束的多头变分图自编码器
变分图自编码器(VGAE)是图表示学习中一个很有前途的深度概率模型。然而,现有的VGAEs大多采用平均场假设,不能很好地表征带有噪声的图。在本文中,我们提出了一种新的深度概率图分析模型,称为和积网络约束的多头变分图自编码器(SPN-MVGAE),它有助于放松平均场假设并学习更好的容错潜在表示。我们提出的模型SPN-MVGAE使用条件和积网络作为约束,以端到端方式学习潜在因素之间的依赖关系。此外,我们引入了由多个变分网络学习的潜在表征的叠加来表示节点的最终潜在表征。我们的模型是第一个使用和积网络进行图表示学习,扩展了和积网络的应用范围。实验结果表明,与其他基线方法相比,我们的模型在真实数据集上的链路预测、容错、节点分类和图形可视化等方面具有竞争优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CurvDrop: A Ricci Curvature Based Approach to Prevent Graph Neural Networks from Over-Smoothing and Over-Squashing Learning to Simulate Crowd Trajectories with Graph Networks Word Sense Disambiguation by Refining Target Word Embedding Curriculum Graph Poisoning Optimizing Guided Traversal for Fast Learned Sparse Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1