Quality of Experience Evaluation for Streaming Video Using CGNN

Zhiming Zhou, Yu Dong, Li Song, Rong Xie, Lin Li, Bing Zhou
{"title":"Quality of Experience Evaluation for Streaming Video Using CGNN","authors":"Zhiming Zhou, Yu Dong, Li Song, Rong Xie, Lin Li, Bing Zhou","doi":"10.1109/VCIP49819.2020.9301799","DOIUrl":null,"url":null,"abstract":"One of the principal contradictions these days in the field of video i s lying between the booming demand for evaluating the streaming video quality and the low precision of the Quality of Experience prediction results. In this paper, we propose Convolutional Neural Network and Gate Recurrent Unit (CGNN)-QoE, a deep learning QoE model, that can predict overall and continuous scores of video streaming services accurately in real time. We further implement state-of-the-art models on the basis of their works and compare with our method on six public available datasets. In all considered scenarios, the CGNN-QoE outperforms existing methods.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

One of the principal contradictions these days in the field of video i s lying between the booming demand for evaluating the streaming video quality and the low precision of the Quality of Experience prediction results. In this paper, we propose Convolutional Neural Network and Gate Recurrent Unit (CGNN)-QoE, a deep learning QoE model, that can predict overall and continuous scores of video streaming services accurately in real time. We further implement state-of-the-art models on the basis of their works and compare with our method on six public available datasets. In all considered scenarios, the CGNN-QoE outperforms existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CGNN的流媒体视频体验质量评价
当前视频领域的主要矛盾之一是对流媒体视频质量评价需求的激增与体验质量预测结果的低精度之间的矛盾。在本文中,我们提出了卷积神经网络和门递归单元(CGNN)-QoE,这是一种深度学习QoE模型,可以实时准确地预测视频流服务的整体和连续分数。我们在他们的工作的基础上进一步实现了最先进的模型,并在六个公共可用数据集上与我们的方法进行了比较。在所有考虑的场景中,CGNN-QoE优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Mixed Appearance-based and Coding Distortion-based CNN Fusion Approach for In-loop Filtering in Video Coding APL: Adaptive Preloading of Short Video with Lyapunov Optimization A Novel Visual Analysis Oriented Rate Control Scheme for HEVC A Theory of Occlusion for Improving Rendering Quality of Views A Progressive Fast CU Split Decision Scheme for AVS3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1