Registration and integration of textured 3-D data

Andrew E. Johnson, S. B. Kang
{"title":"Registration and integration of textured 3-D data","authors":"Andrew E. Johnson, S. B. Kang","doi":"10.1109/IM.1997.603871","DOIUrl":null,"url":null,"abstract":"In general, multiple views are required to create a complete 3-D model of an object or of a multi-roomed indoor scene. In this work, we address the problem of merging multiple textured 3-D data sets, each of which corresponds to a different view of a scene or object. There are two steps to the merging process: registration and integration. To register, or align, data sets we use a modified version of the Iterative Closest Point algorithm; our version, which we call color ICP, considers not only 3-D information, but color as well. We show that the use of color decreases registration error by an order of magnitude. Once the 3-D data sets have been registered we integrate them to produce a seamless, composite 3-D textured model. Our approach to integration uses a 3-D occupancy grid to represent likelihood of spatial occupancy through voting. In addition to occupancy information, we store surface normal in each voxel of the occupancy grid. Surface normal is used to robustly extract a surface from the occupancy grid; on that surface we blend textures from multiple views.","PeriodicalId":337843,"journal":{"name":"Proceedings. International Conference on Recent Advances in 3-D Digital Imaging and Modeling (Cat. No.97TB100134)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"395","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Recent Advances in 3-D Digital Imaging and Modeling (Cat. No.97TB100134)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IM.1997.603871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 395

Abstract

In general, multiple views are required to create a complete 3-D model of an object or of a multi-roomed indoor scene. In this work, we address the problem of merging multiple textured 3-D data sets, each of which corresponds to a different view of a scene or object. There are two steps to the merging process: registration and integration. To register, or align, data sets we use a modified version of the Iterative Closest Point algorithm; our version, which we call color ICP, considers not only 3-D information, but color as well. We show that the use of color decreases registration error by an order of magnitude. Once the 3-D data sets have been registered we integrate them to produce a seamless, composite 3-D textured model. Our approach to integration uses a 3-D occupancy grid to represent likelihood of spatial occupancy through voting. In addition to occupancy information, we store surface normal in each voxel of the occupancy grid. Surface normal is used to robustly extract a surface from the occupancy grid; on that surface we blend textures from multiple views.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纹理三维数据的配准与集成
一般来说,创建一个物体或多房间室内场景的完整3d模型需要多个视图。在这项工作中,我们解决了合并多个纹理三维数据集的问题,每个数据集对应于场景或对象的不同视图。合并过程有两个步骤:注册和集成。为了注册或对齐数据集,我们使用了迭代最近点算法的改进版本;我们的版本,我们称之为彩色ICP,不仅考虑3-D信息,还考虑颜色。我们表明,颜色的使用减少了一个数量级的配准误差。一旦3-D数据集被注册,我们整合它们来产生一个无缝的,复合的3-D纹理模型。我们的整合方法使用三维占用网格来表示通过投票占用空间的可能性。除了占用信息外,我们还在占用网格的每个体素中存储表面法线。表面法线用于从占用网格中鲁棒提取表面;在这个表面上,我们混合了来自多个视图的纹理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shape measurement of discontinuous objects using projected fringes and temporal phase unwrapping Registration of 3-D partial surface models using luminance and depth information Optimal postures and positioning for human body scanning Toward optimal structured light patterns Automated pavement distress data collection and analysis: a 3-D approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1