FogTMDetector - Fog Based Transport Mode Detection using Smartphones

M. Kamalian, Paulo Ferreira
{"title":"FogTMDetector - Fog Based Transport Mode Detection using Smartphones","authors":"M. Kamalian, Paulo Ferreira","doi":"10.1109/icfec54809.2022.00009","DOIUrl":null,"url":null,"abstract":"A user’s transport mode (e.g., walk, car, etc.) can be detected by using a smartphone. Such devices exist in a great number with enough computation power and sensors to run a classifier (i.e., for transport mode detection). Using a smartphone in a fog environment ensures low latency, high generalization, high accuracy, and low battery consumption. We propose a fog-based real-time (at human time scale) transport mode detection, called FogTMDetector; it consists of a Random Forest classifier trained with magnetometer, accelerometer, and GPS data. The overall accuracy achieved by our system is 93% when detecting 8 different modes (i.e., stationary, walk, bicycle, car, bus, train, tram, and subway). We compared FogTMDetector with another recent system (called EdgeTrans). The comparison results suggest that our solution achieves 10% higher motorized accuracy (i.e., 94.4%) with more fine-grained motorized transport modes (i.e., subway, tram, etc.) thanks to the magnetometer sensor readings. FogTMDetector uses a low sampling rate (1Hz) for logging accelerometer and magnetometer and (every 10 seconds) for GPS to ensure low battery consumption. FogTMDetector is also generalizable as it is robust against variation of users and smartphone positions.","PeriodicalId":423599,"journal":{"name":"2022 IEEE 6th International Conference on Fog and Edge Computing (ICFEC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th International Conference on Fog and Edge Computing (ICFEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icfec54809.2022.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A user’s transport mode (e.g., walk, car, etc.) can be detected by using a smartphone. Such devices exist in a great number with enough computation power and sensors to run a classifier (i.e., for transport mode detection). Using a smartphone in a fog environment ensures low latency, high generalization, high accuracy, and low battery consumption. We propose a fog-based real-time (at human time scale) transport mode detection, called FogTMDetector; it consists of a Random Forest classifier trained with magnetometer, accelerometer, and GPS data. The overall accuracy achieved by our system is 93% when detecting 8 different modes (i.e., stationary, walk, bicycle, car, bus, train, tram, and subway). We compared FogTMDetector with another recent system (called EdgeTrans). The comparison results suggest that our solution achieves 10% higher motorized accuracy (i.e., 94.4%) with more fine-grained motorized transport modes (i.e., subway, tram, etc.) thanks to the magnetometer sensor readings. FogTMDetector uses a low sampling rate (1Hz) for logging accelerometer and magnetometer and (every 10 seconds) for GPS to ensure low battery consumption. FogTMDetector is also generalizable as it is robust against variation of users and smartphone positions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FogTMDetector -基于雾的传输模式检测使用智能手机
用户的交通方式(例如,步行,汽车等)可以通过使用智能手机来检测。这样的设备大量存在,具有足够的计算能力和传感器来运行分类器(即用于传输模式检测)。在雾环境中使用智能手机可以确保低延迟、高泛化、高精度和低电池消耗。我们提出了一种基于雾的实时(人类时间尺度)传输模式检测,称为FogTMDetector;它由一个随机森林分类器组成,该分类器由磁力计、加速度计和GPS数据训练而成。在检测8种不同的模式(即静止、步行、自行车、汽车、公共汽车、火车、有轨电车和地铁)时,我们的系统实现的总体准确率为93%。我们将FogTMDetector与另一个最新的系统(称为EdgeTrans)进行了比较。对比结果表明,由于磁力计传感器读数,我们的解决方案在更细粒度的机动运输方式(即地铁,电车等)下实现了10%的机动精度提高(即94.4%)。FogTMDetector使用低采样率(1Hz)用于记录加速度计和磁力计,并(每10秒)用于GPS,以确保低电池消耗。FogTMDetector还具有通用性,因为它对用户和智能手机位置的变化具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-Level Metrics for Service Level Objective-aware Autoscaling in Polaris: a Performance Evaluation Optimal Timing for Bandwidth Reservation for Time-Sensitive Vehicular Applications FaDO: FaaS Functions and Data Orchestrator for Multiple Serverless Edge-Cloud Clusters SIMORA: SIMulating Open Routing protocols for Application interoperability on edge devices SDN-based Service Discovery and Assignment Framework to Preserve Service Availability in Telco-based Multi-Access Edge Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1