Effective conditioned and composed image retrieval combining CLIP-based features

Alberto Baldrati, M. Bertini, Tiberio Uricchio, A. Bimbo
{"title":"Effective conditioned and composed image retrieval combining CLIP-based features","authors":"Alberto Baldrati, M. Bertini, Tiberio Uricchio, A. Bimbo","doi":"10.1109/CVPR52688.2022.02080","DOIUrl":null,"url":null,"abstract":"Conditioned and composed image retrieval extend CBIR systems by combining a query image with an additional text that expresses the intent of the user, describing additional requests w.r.t. the visual content of the query image. This type of search is interesting for e-commerce applications, e.g. to develop interactive multimodal searches and chat-bots. In this demo, we present an interactive system based on a combiner network, trained using contrastive learning, that combines visual and textual features obtained from the OpenAI CLIP network to address conditioned CBIR. The system can be used to improve e-shop search engines. For example, considering the fashion domain it lets users search for dresses, shirts and toptees using a candidate start image and expressing some visual differences w.r.t. its visual con-tent, e.g. asking to change color, pattern or shape. The pro-posed network obtains state-of-the-art performance on the FashionIQ dataset and on the more recent CIRR dataset, showing its applicability to the fashion domain for conditioned retrieval, and to more generic content considering the more general task of composed image retrieval.","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.02080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

Conditioned and composed image retrieval extend CBIR systems by combining a query image with an additional text that expresses the intent of the user, describing additional requests w.r.t. the visual content of the query image. This type of search is interesting for e-commerce applications, e.g. to develop interactive multimodal searches and chat-bots. In this demo, we present an interactive system based on a combiner network, trained using contrastive learning, that combines visual and textual features obtained from the OpenAI CLIP network to address conditioned CBIR. The system can be used to improve e-shop search engines. For example, considering the fashion domain it lets users search for dresses, shirts and toptees using a candidate start image and expressing some visual differences w.r.t. its visual con-tent, e.g. asking to change color, pattern or shape. The pro-posed network obtains state-of-the-art performance on the FashionIQ dataset and on the more recent CIRR dataset, showing its applicability to the fashion domain for conditioned retrieval, and to more generic content considering the more general task of composed image retrieval.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合基于clip特征的有效条件和组合图像检索
条件和组合图像检索通过将查询图像与表达用户意图的附加文本相结合来扩展CBIR系统,并在查询图像的视觉内容之外描述附加请求。这种类型的搜索对于电子商务应用来说很有趣,例如开发交互式多模式搜索和聊天机器人。在这个演示中,我们展示了一个基于组合网络的交互式系统,使用对比学习进行训练,该系统结合了从OpenAI CLIP网络获得的视觉和文本特征来解决条件CBIR。该系统可用于改进电子商店搜索引擎。例如,考虑到时尚领域,它允许用户使用候选图像搜索连衣裙,衬衫和toptee,并在其视觉内容之外表达一些视觉差异,例如要求更改颜色,图案或形状。提出的网络在FashionIQ数据集和最新的CIRR数据集上获得了最先进的性能,表明其适用于时尚领域的条件检索,以及考虑到更一般的合成图像检索任务的更一般的内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Aperture Imaging with Events and Frames PhotoScene: Photorealistic Material and Lighting Transfer for Indoor Scenes A Unified Model for Line Projections in Catadioptric Cameras with Rotationally Symmetric Mirrors Distinguishing Unseen from Seen for Generalized Zero-shot Learning Virtual Correspondence: Humans as a Cue for Extreme-View Geometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1