Gesture and Action Discovery for Evaluating Virtual Environments with Semi-Supervised Segmentation of Telemetry Records

A. Batch, Kyungjun Lee, H. Maddali, N. Elmqvist
{"title":"Gesture and Action Discovery for Evaluating Virtual Environments with Semi-Supervised Segmentation of Telemetry Records","authors":"A. Batch, Kyungjun Lee, H. Maddali, N. Elmqvist","doi":"10.1109/AIVR.2018.00009","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel pipeline for semi-supervised behavioral coding of videos of users testing a device or interface, with an eye toward human-computer interaction evaluation for virtual reality. Our system applies existing statistical techniques for time-series classification, including e-divisive change point detection and \"Symbolic Aggregate approXimation\" (SAX) with agglomerative hierarchical clustering, to 3D pose telemetry data. These techniques create classes of short segments of single-person video data–short actions of potential interest called \"micro-gestures.\" A long short-term memory (LSTM) layer then learns these micro-gestures from pose features generated purely from video via a pre-trained OpenPose convolutional neural network (CNN) to predict their occurrence in unlabeled test videos. We present and discuss the results from testing our system on the single user pose videos of the CMU Panoptic Dataset.","PeriodicalId":371868,"journal":{"name":"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIVR.2018.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose a novel pipeline for semi-supervised behavioral coding of videos of users testing a device or interface, with an eye toward human-computer interaction evaluation for virtual reality. Our system applies existing statistical techniques for time-series classification, including e-divisive change point detection and "Symbolic Aggregate approXimation" (SAX) with agglomerative hierarchical clustering, to 3D pose telemetry data. These techniques create classes of short segments of single-person video data–short actions of potential interest called "micro-gestures." A long short-term memory (LSTM) layer then learns these micro-gestures from pose features generated purely from video via a pre-trained OpenPose convolutional neural network (CNN) to predict their occurrence in unlabeled test videos. We present and discuss the results from testing our system on the single user pose videos of the CMU Panoptic Dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遥测记录半监督分割评估虚拟环境的手势和动作发现
在本文中,我们提出了一种新的管道,用于用户测试设备或界面的视频的半监督行为编码,着眼于虚拟现实的人机交互评估。我们的系统将现有的时间序列分类统计技术应用于三维姿态遥测数据,包括e-分裂变化点检测和具有聚集分层聚类的“符号聚集近似”(SAX)。这些技术创造了单人视频数据的短片段类——潜在兴趣的短动作,称为“微手势”。然后,长短期记忆(LSTM)层通过预训练的OpenPose卷积神经网络(CNN)从纯粹从视频生成的姿势特征中学习这些微手势,以预测它们在未标记的测试视频中的出现情况。我们展示并讨论了在CMU Panoptic数据集的单用户姿势视频上测试我们的系统的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Perceptual Evaluation of Generative Adversarial Network Real-Time Synthesized Drum Sounds in a Virtual Environment Virtual Crime Scene Understanding Head-Mounted Display FOV in Maritime Search and Rescue Object Detection [Publisher's information] A Combination of Feedback Control and Vision-Based Deep Learning Mechanism for Guiding Self-Driving Cars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1