Estimation of continuous-time nonlinear systems by using the Unscented Kalman Filter

M. Zheng, K. Ikeda, T. Shimomura
{"title":"Estimation of continuous-time nonlinear systems by using the Unscented Kalman Filter","authors":"M. Zheng, K. Ikeda, T. Shimomura","doi":"10.5772/9592","DOIUrl":null,"url":null,"abstract":"This paper proposes a continuous-time model estimation method by using the Unscented Kalman Filter (UKF) from the sampled I/O data, in which the plant parameters as well as the initial state are estimated. The initial state is estimated based on a backward system of the plant, and the parameters are estimated by using the iterated UKF, which repeats the estimation of the forward system and the backward system alternately. In order to demonstrate the effectiveness of the proposed method, the rotary pendulum is provided to estimate the parameters of the continuous-time nonlinear system.","PeriodicalId":438704,"journal":{"name":"Proceedings of SICE Annual Conference 2010","volume":"721 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SICE Annual Conference 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/9592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes a continuous-time model estimation method by using the Unscented Kalman Filter (UKF) from the sampled I/O data, in which the plant parameters as well as the initial state are estimated. The initial state is estimated based on a backward system of the plant, and the parameters are estimated by using the iterated UKF, which repeats the estimation of the forward system and the backward system alternately. In order to demonstrate the effectiveness of the proposed method, the rotary pendulum is provided to estimate the parameters of the continuous-time nonlinear system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用无气味卡尔曼滤波估计连续时间非线性系统
本文提出了一种利用Unscented卡尔曼滤波(UKF)对采样的I/O数据进行连续时间模型估计的方法,该方法对目标参数和初始状态进行估计。基于对象的后向系统估计初始状态,并使用迭代UKF估计参数,交替重复前向系统和后向系统的估计。为了验证所提方法的有效性,用摆锤对连续时间非线性系统的参数进行估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human motion recognition using directional motion history images Pipe wall thickness inspection with current driven thermal method Measurement of flexed posture for flexible mono-tread mobile track: Fundamental test and validation using new flexible displacement sensor Online leader-following formation navigation with initial movements of followers and its experimental verification Down-hill Simplex Method based Differential Evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1