Geometric Invariant Shape Classification Using Hidden Markov Model

Chi-Man Pun, Cong Lin
{"title":"Geometric Invariant Shape Classification Using Hidden Markov Model","authors":"Chi-Man Pun, Cong Lin","doi":"10.1109/DICTA.2010.75","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel approach for geometric shape classification by using shape simplification and discrete Hidden Markov Model (HMM). The HMM is constructed using the landmark points obtained from the shape simplification for each shape image in the dataset. Some useful strategies have been employed for the constructed HMM for geometric shape classification. Experimental results based on the common MPEG7 CE shapes database shows that our proposed method can achieve very good accuracy in different kinds of shapes.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we propose a novel approach for geometric shape classification by using shape simplification and discrete Hidden Markov Model (HMM). The HMM is constructed using the landmark points obtained from the shape simplification for each shape image in the dataset. Some useful strategies have been employed for the constructed HMM for geometric shape classification. Experimental results based on the common MPEG7 CE shapes database shows that our proposed method can achieve very good accuracy in different kinds of shapes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于隐马尔可夫模型的几何不变形状分类
本文提出了一种基于形状简化和离散隐马尔可夫模型(HMM)的几何形状分类方法。HMM是利用数据集中每个形状图像的形状简化得到的地标点来构建的。在构造的隐马尔可夫模型中采用了一些有用的策略进行几何形状分类。基于MPEG7通用CE形状数据库的实验结果表明,该方法在不同形状下都能达到很好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulse Repetition Interval Modulation Recognition Using Symbolization Vessel Segmentation from Color Retinal Images with Varying Contrast and Central Reflex Properties A Novel Algorithm for Text Detection and Localization in Natural Scene Images Image Retrieval with a Visual Thesaurus Chromosome Classification Based on Wavelet Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1