{"title":"Face recognition using multispectral random field texture models, color content, and biometric features","authors":"O. Hernandez, Mitchell S. Kleiman","doi":"10.1109/AIPR.2005.28","DOIUrl":null,"url":null,"abstract":"Most of the available research on face recognition has been performed using gray scale imagery. This paper presents a novel two-pass face recognition system that uses a multispectral random field texture model, specifically the multispectral simultaneous auto regressive (MSAR) model, and illumination invariant color features. During the first pass, the system detects and segments a face from the background of a color image, and confirms the detection based on a statistically modeled skin pixel map and the elliptical nature of human faces. In the second pass, the face regions are located using the same image segmentation approach on a subspace of the original image, biometric information, and spatial relationships. The determined facial features are then assigned biometric values based on anthropometries, and a set of vectors is created to determine similarity in the facial feature space","PeriodicalId":130204,"journal":{"name":"34th Applied Imagery and Pattern Recognition Workshop (AIPR'05)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"34th Applied Imagery and Pattern Recognition Workshop (AIPR'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2005.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Most of the available research on face recognition has been performed using gray scale imagery. This paper presents a novel two-pass face recognition system that uses a multispectral random field texture model, specifically the multispectral simultaneous auto regressive (MSAR) model, and illumination invariant color features. During the first pass, the system detects and segments a face from the background of a color image, and confirms the detection based on a statistically modeled skin pixel map and the elliptical nature of human faces. In the second pass, the face regions are located using the same image segmentation approach on a subspace of the original image, biometric information, and spatial relationships. The determined facial features are then assigned biometric values based on anthropometries, and a set of vectors is created to determine similarity in the facial feature space