Application of the 2D Local Entropy Information in Sparse TFD Reconstruction

Vedran Jurdana, I. Volaric, V. Sucic
{"title":"Application of the 2D Local Entropy Information in Sparse TFD Reconstruction","authors":"Vedran Jurdana, I. Volaric, V. Sucic","doi":"10.1109/CoBCom55489.2022.9880775","DOIUrl":null,"url":null,"abstract":"This paper investigates a method for information extraction from the time-frequency distributions (TFDs) based on the local Rényi entropy (LRE) calculated in 2-dimensional (2D) time-frequency (TF) regions. The obtained entropy map information has been projected on the time and frequency axes, estimating the local number of components. The local number of components obtained in this way has been compared to the existing 1D estimation method and applied in the shrinkage operator of a sparse TFD reconstruction algorithm. The obtained results confirm that the estimation based on the 2D entropy map achieves higher accuracy on the considered synthetic and real-life signals corrupted by noise when compared to the accuracy of the 1D method, improving both the shrinking operator classification and the TFD reconstruction performance.","PeriodicalId":131597,"journal":{"name":"2022 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoBCom55489.2022.9880775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates a method for information extraction from the time-frequency distributions (TFDs) based on the local Rényi entropy (LRE) calculated in 2-dimensional (2D) time-frequency (TF) regions. The obtained entropy map information has been projected on the time and frequency axes, estimating the local number of components. The local number of components obtained in this way has been compared to the existing 1D estimation method and applied in the shrinkage operator of a sparse TFD reconstruction algorithm. The obtained results confirm that the estimation based on the 2D entropy map achieves higher accuracy on the considered synthetic and real-life signals corrupted by noise when compared to the accuracy of the 1D method, improving both the shrinking operator classification and the TFD reconstruction performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维局部熵信息在稀疏TFD重建中的应用
本文研究了一种基于二维时频(TF)区域计算的局部rsamnyi熵(LRE)的时频分布信息提取方法。将得到的熵图信息投影到时间轴和频率轴上,估计局部分量的数量。将这种方法得到的局部分量数与现有的一维估计方法进行了比较,并应用于稀疏TFD重建算法的收缩算子。结果表明,与一维方法相比,基于二维熵图的估计在被噪声破坏的合成信号和真实信号上获得了更高的精度,提高了收缩算子分类和TFD重建性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NFC communication through metal AWG-Channel-Spacing: A New Software Tool to Calculate Accurate Channel Spacing of an AWG Optical Multiplexer/Demultiplexer Visible Light Technologies — Background, Principles, Current applications and future developments Visible Light Sensing for Recognising Human Postural Transitions An Optimal Solution for a Human Wrist Rotation Recognition System by Utilizing Visible Light Communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1