Analysis of VHR Image Classification by Single and Ensemble of Classifiers

M. G. Lacerda, E. H. Shiguemori, A. Damiao, C. S. Anjos, M. Habermann
{"title":"Analysis of VHR Image Classification by Single and Ensemble of Classifiers","authors":"M. G. Lacerda, E. H. Shiguemori, A. Damiao, C. S. Anjos, M. Habermann","doi":"10.1109/LAGIRS48042.2020.9165621","DOIUrl":null,"url":null,"abstract":"Given the wide variety of image classifiers available nowadays, some questions remain about the accuracy and processing time of Very High Resolution (VHR) images. Another question concerns the use of a Single or Ensemble Classifiers. Of course, the main factor to consider is the quality of the classified image, but computational cost is also important, especially in applications that require real-time processing. Given this scenario, this paper aims to relate the accuracy of seven single classifiers and the ensemble of the same classifiers with the processing time. In this paper the ensemble of classifiers had the best results in terms of accuracy, however, it comes to processing time, the decision tree had the best performance.","PeriodicalId":111863,"journal":{"name":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAGIRS48042.2020.9165621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given the wide variety of image classifiers available nowadays, some questions remain about the accuracy and processing time of Very High Resolution (VHR) images. Another question concerns the use of a Single or Ensemble Classifiers. Of course, the main factor to consider is the quality of the classified image, but computational cost is also important, especially in applications that require real-time processing. Given this scenario, this paper aims to relate the accuracy of seven single classifiers and the ensemble of the same classifiers with the processing time. In this paper the ensemble of classifiers had the best results in terms of accuracy, however, it comes to processing time, the decision tree had the best performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于单一分类器和集成分类器的VHR图像分类分析
目前,图像分类器种类繁多,但在超高分辨率(VHR)图像的分类精度和处理时间方面仍存在一些问题。另一个问题涉及单个或集成分类器的使用。当然,要考虑的主要因素是分类图像的质量,但计算成本也很重要,特别是在需要实时处理的应用程序中。在这种情况下,本文旨在将7个单一分类器的准确率和同一分类器的集成与处理时间联系起来。在本文中,分类器集成在准确率方面效果最好,但在处理时间方面,决策树表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deforestation Polygon Assessment Tool: Providing Comprehensive Information On Deforestation In The Brazilian Cerrado Biome Assessment of rainfall influence on sentinel-1 time series on amazonian tropical forests aiming deforestation detection improvement Spatial Association To Characterize The Climate Teleconnection Patterns In Ecuador Based On Satellite Precipitation Estimates Subsidence in Maceio, Brazil, Characterized by Dinsar and Inverse Modeling Preliminary Analysis For Automatic Tidal Inlets Mapping Using Google Earth Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1