Gravity Load Effects on Inelastic Simulation of Buildings Subjected to Wind Loads

J. Judd, J. Niedens
{"title":"Gravity Load Effects on Inelastic Simulation of Buildings Subjected to Wind Loads","authors":"J. Judd, J. Niedens","doi":"10.23967/admos.2023.072","DOIUrl":null,"url":null,"abstract":"Summary. Reduced-order (single-degree-of-freedom) models of buildings subjected to wind loads were analyzed to determine the effect of gravity loads on inelastic behavior. The lateral wind loads were based on data from atmospheric boundary layer wind tunnel tests to capture the temporal and spatial variation of wind pressure on a building envelope. The lateral load resisting system of the building was idealized using a bilinear relationship, and gravity load effects were introduced using a stability coefficient. Nonlinear response history analyses were solved using direct implicit integration of the equation of motion, and an energy balance was used to assess the quality of the numerical solution. The resulting response histories were used to interrogate the relationship between inelastic displacement, ductility, period of vibration, and gravity loads. The results indicate that inelastic displacements were approximately equal to the elastic displacements even in the presence of gravity loads for cross wind excitation. For along wind excitation, the inelastic displacements were approximately equal to the elastic displacements regardless of gravity loads. The findings suggest that the equal displacement concept may have application to the wind design of high-rise buildings where cross-wind loads control the design of the lateral system.","PeriodicalId":414984,"journal":{"name":"XI International Conference on Adaptive Modeling and Simulation","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"XI International Conference on Adaptive Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/admos.2023.072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary. Reduced-order (single-degree-of-freedom) models of buildings subjected to wind loads were analyzed to determine the effect of gravity loads on inelastic behavior. The lateral wind loads were based on data from atmospheric boundary layer wind tunnel tests to capture the temporal and spatial variation of wind pressure on a building envelope. The lateral load resisting system of the building was idealized using a bilinear relationship, and gravity load effects were introduced using a stability coefficient. Nonlinear response history analyses were solved using direct implicit integration of the equation of motion, and an energy balance was used to assess the quality of the numerical solution. The resulting response histories were used to interrogate the relationship between inelastic displacement, ductility, period of vibration, and gravity loads. The results indicate that inelastic displacements were approximately equal to the elastic displacements even in the presence of gravity loads for cross wind excitation. For along wind excitation, the inelastic displacements were approximately equal to the elastic displacements regardless of gravity loads. The findings suggest that the equal displacement concept may have application to the wind design of high-rise buildings where cross-wind loads control the design of the lateral system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重力荷载对风荷载作用下建筑物非弹性模拟的影响
总结。分析了风荷载作用下建筑物的降阶(单自由度)模型,以确定重力荷载对建筑物非弹性性能的影响。侧向风荷载基于大气边界层风洞试验数据,以捕捉建筑围护结构风压的时空变化。采用双线性关系理想化了建筑的抗侧荷载体系,采用稳定系数引入了重力荷载效应。非线性响应历史分析采用运动方程的直接隐式积分法求解,并采用能量平衡法评价数值解的质量。由此产生的响应历史被用来询问非弹性位移、延性、振动周期和重力载荷之间的关系。结果表明,在横向风荷载作用下,非弹性位移近似等于弹性位移。在顺风激励下,无论重力荷载如何,非弹性位移近似等于弹性位移。研究结果表明,等位移概念可应用于横向风荷载控制侧系设计的高层建筑的风设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Error Estimation for the Material Point and Particle in Cell Methods Dimension Reduction of Dynamic Superresolution and Application to Cell Tracking in PET Dimensionality reduction and physics-based manifold learning for parametric models in biomechanics and tissue engineering Modelling and Simulating Cities with Digital Twins The use of IoT technologies for advanced risk management in tailings dams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1