Autonomous Motion of Mobile Robot Using Fuzzy-Neural Networks

A. Cardenas, Javier G. Rázuri, D. Sundgren, R. Rahmani
{"title":"Autonomous Motion of Mobile Robot Using Fuzzy-Neural Networks","authors":"A. Cardenas, Javier G. Rázuri, D. Sundgren, R. Rahmani","doi":"10.1109/MICAI.2013.15","DOIUrl":null,"url":null,"abstract":"This paper analyzes the performance and practical implementation of fuzzy-neural networks for the autonomous motion of mobile robots. The designed fuzzy-neural controller is a refined version of a conventional fuzzy controller, and was trained to optimize a given cost function minimizing positioning error. It was found that the mobile robot with fuzzy-neural controller presents good positioning and tracking performance for different types of desired trajectories. It was verified by computer simulation as well as experimentally using a laboratory-scale car-like robot model.","PeriodicalId":340039,"journal":{"name":"2013 12th Mexican International Conference on Artificial Intelligence","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 12th Mexican International Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2013.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper analyzes the performance and practical implementation of fuzzy-neural networks for the autonomous motion of mobile robots. The designed fuzzy-neural controller is a refined version of a conventional fuzzy controller, and was trained to optimize a given cost function minimizing positioning error. It was found that the mobile robot with fuzzy-neural controller presents good positioning and tracking performance for different types of desired trajectories. It was verified by computer simulation as well as experimentally using a laboratory-scale car-like robot model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊神经网络的移动机器人自主运动
本文分析了模糊神经网络在移动机器人自主运动中的性能和实际实现。所设计的模糊神经控制器是传统模糊控制器的改进版,并被训练以优化给定的代价函数,使定位误差最小化。研究发现,采用模糊神经控制器的移动机器人对不同类型的期望轨迹具有良好的定位和跟踪性能。通过计算机仿真和实验室规模的类车机器人模型进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coordination Model for Multi-robot Systems Based on Cooperative Behaviors JasMo - A Modularization Framework for Jason Examining Everyday Speech and Motor Symptoms of Parkinson's Disease for Diagnosis and Progression Tracking Quantifiers Types Resolution in NL Software Requirements An Uncertainty Quantification Method Based on Generalized Interval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1