Evaluating Performance of Mixed Precision Linear Solvers with Iterative Refinement

B. Krasnopolsky, A. Medvedev
{"title":"Evaluating Performance of Mixed Precision Linear Solvers with Iterative Refinement","authors":"B. Krasnopolsky, A. Medvedev","doi":"10.14529/jsfi210301","DOIUrl":null,"url":null,"abstract":"The solution of systems of linear algebraic equations is among the time-consuming problems when performing the numerical simulations. One of the possible ways of improving the corresponding solver performance is the use of reduced precision calculations, which, however, may affect the accuracy of the obtained solution. The current paper analyzes the potential of using the mixed precision iterative refinement procedure to solve the systems of equations occurring as a result of the discretization of elliptic differential equations. The paper compares several inner solver stopping criteria and proposes the one allowing to eliminate the residual deviation and minimize the number of extra iterations. The presented numerical calculation results demonstrate the efficiency of the adopted algorithm and show about the decrease in the solution time by a factor of 1.5 for the turbulent flow simulations when using the iterative refinement procedure to solve the corresponding pressure Poisson equation.","PeriodicalId":338883,"journal":{"name":"Supercomput. Front. Innov.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supercomput. Front. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/jsfi210301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The solution of systems of linear algebraic equations is among the time-consuming problems when performing the numerical simulations. One of the possible ways of improving the corresponding solver performance is the use of reduced precision calculations, which, however, may affect the accuracy of the obtained solution. The current paper analyzes the potential of using the mixed precision iterative refinement procedure to solve the systems of equations occurring as a result of the discretization of elliptic differential equations. The paper compares several inner solver stopping criteria and proposes the one allowing to eliminate the residual deviation and minimize the number of extra iterations. The presented numerical calculation results demonstrate the efficiency of the adopted algorithm and show about the decrease in the solution time by a factor of 1.5 for the turbulent flow simulations when using the iterative refinement procedure to solve the corresponding pressure Poisson equation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于迭代优化的混合精度线性求解器性能评价
在进行数值模拟时,线性代数方程组的求解是费时的问题之一。提高求解器性能的一种可能的方法是使用降低精度的计算,然而,这可能会影响得到的解的精度。本文分析了用混合精度迭代精化方法求解椭圆型微分方程离散化后的方程组的潜力。本文比较了几种内求解器停止准则,提出了一种能够消除残余偏差和最小化额外迭代次数的内求解器停止准则。数值计算结果证明了所采用算法的有效性,并表明采用迭代细化法求解相应的压力泊松方程时,求解时间减少了1.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Supercomputer-Based Modeling System for Short-Term Prediction of Urban Surface Air Quality River Routing in the INM RAS-MSU Land Surface Model: Numerical Scheme and Parallel Implementation on Hybrid Supercomputers Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas: Challenges and Initial Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1