Detecting the long-tail of Points of Interest in tagged photo collections

Christos Zigkolis, S. Papadopoulos, Y. Kompatsiaris, A. Vakali
{"title":"Detecting the long-tail of Points of Interest in tagged photo collections","authors":"Christos Zigkolis, S. Papadopoulos, Y. Kompatsiaris, A. Vakali","doi":"10.1109/CBMI.2011.5972551","DOIUrl":null,"url":null,"abstract":"The paper tackles the problem of matching the photos of a tagged photo collection to a list of “long-tail” Points Of Interest (PoIs), that is PoIs that are not very popular and thus not well represented in the photo collection. Despite the significance of improving “long-tail” PoI photo retrieval for travel applications, most landmark detection methods to date have been tested on very popular landmarks. In this paper, we conduct a thorough empirical analysis comparing four baseline matching methods that rely on photo metadata, three variants of an approach that uses cluster analysis in order to discover PoI-related photo clusters, and a real-world retrieval mechanism (Flickr search) on a set of less popular PoIs. A user-based evaluation of the aforementioned methods is conducted on a Flickr photo collection of over 100, 000 photos from 10 well-known touristic destinations in Greece. A set of 104 “long-tail” PoIs is collected for these destinations from Wikipedia, Wikimapia and OpenStreetMap. The results demonstrate that two of the baseline methods outperform Flickr search in terms of precision and F-measure, whereas two of the cluster-based methods outperform it in terms of recall and PoI coverage. We consider the results of this study valuable for enhancing the indexing of pictorial content in social media sites.","PeriodicalId":358337,"journal":{"name":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2011.5972551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The paper tackles the problem of matching the photos of a tagged photo collection to a list of “long-tail” Points Of Interest (PoIs), that is PoIs that are not very popular and thus not well represented in the photo collection. Despite the significance of improving “long-tail” PoI photo retrieval for travel applications, most landmark detection methods to date have been tested on very popular landmarks. In this paper, we conduct a thorough empirical analysis comparing four baseline matching methods that rely on photo metadata, three variants of an approach that uses cluster analysis in order to discover PoI-related photo clusters, and a real-world retrieval mechanism (Flickr search) on a set of less popular PoIs. A user-based evaluation of the aforementioned methods is conducted on a Flickr photo collection of over 100, 000 photos from 10 well-known touristic destinations in Greece. A set of 104 “long-tail” PoIs is collected for these destinations from Wikipedia, Wikimapia and OpenStreetMap. The results demonstrate that two of the baseline methods outperform Flickr search in terms of precision and F-measure, whereas two of the cluster-based methods outperform it in terms of recall and PoI coverage. We consider the results of this study valuable for enhancing the indexing of pictorial content in social media sites.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
标记图片集中兴趣点的长尾检测
本文解决了将带标签的照片集合中的照片与“长尾”兴趣点(PoIs)列表相匹配的问题,即不太受欢迎的兴趣点,因此在照片集合中没有很好地表示。尽管改进“长尾”PoI照片检索对旅游应用具有重要意义,但迄今为止,大多数地标检测方法都是在非常受欢迎的地标上进行测试的。在本文中,我们进行了全面的实证分析,比较了四种依赖于照片元数据的基线匹配方法,三种使用聚类分析来发现poi相关照片聚类的方法,以及一种基于一组不太受欢迎的poi的现实世界检索机制(Flickr搜索)。对上述方法的基于用户的评估是在Flickr上收集的来自希腊10个著名旅游目的地的10万多张照片上进行的。我们从维基百科、维基百科和OpenStreetMap上为这些目的地收集了104个“长尾”poi。结果表明,两种基线方法在精度和F-measure方面优于Flickr搜索,而两种基于聚类的方法在召回率和PoI覆盖方面优于Flickr搜索。我们认为这项研究的结果对于增强社交媒体网站上图片内容的索引是有价值的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An efficient method for the unsupervised discovery of signalling motifs in large audio streams Efficient video summarization and retrieval tools Tonal-based retrieval of Arabic and middle-east music by automatic makam description Automatic illustration with cross-media retrieval in large-scale collections Interactive social, spatial and temporal querying for multimedia retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1