Drone-vs-Bird Detection Challenge at IEEE AVSS2021

A. Coluccia, A. Fascista, Arne Schumann, L. Sommer, A. Dimou, D. Zarpalas, F. C. Akyon, Ogulcan Eryuksel, Kamil Anil Ozfuttu, S. Altinuc, Fardad Dadboud, Vaibhav Patel, Varun Mehta, M. Bolic, I. Mantegh
{"title":"Drone-vs-Bird Detection Challenge at IEEE AVSS2021","authors":"A. Coluccia, A. Fascista, Arne Schumann, L. Sommer, A. Dimou, D. Zarpalas, F. C. Akyon, Ogulcan Eryuksel, Kamil Anil Ozfuttu, S. Altinuc, Fardad Dadboud, Vaibhav Patel, Varun Mehta, M. Bolic, I. Mantegh","doi":"10.1109/AVSS52988.2021.9663844","DOIUrl":null,"url":null,"abstract":"This paper presents the 4-th edition of the “drone-vs-bird” detection challenge, launched in conjunction with the the 17-th IEEE International Conference on Advanced Video and Signal-based Surveillance (AVSS). The objective of the challenge is to tackle the problem of detecting the presence of one or more drones in video scenes where birds may suddenly appear, taking into account some important effects such as the background and foreground motion. The proposed solutions should identify and localize drones in the scene only when they are actually present, without being confused by the presence of birds and the dynamic nature of the captured scenes. The paper illustrates the results of the challenge on the 2021 dataset, which has been further extended compared to the previous edition run in 2020.","PeriodicalId":246327,"journal":{"name":"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS52988.2021.9663844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

This paper presents the 4-th edition of the “drone-vs-bird” detection challenge, launched in conjunction with the the 17-th IEEE International Conference on Advanced Video and Signal-based Surveillance (AVSS). The objective of the challenge is to tackle the problem of detecting the presence of one or more drones in video scenes where birds may suddenly appear, taking into account some important effects such as the background and foreground motion. The proposed solutions should identify and localize drones in the scene only when they are actually present, without being confused by the presence of birds and the dynamic nature of the captured scenes. The paper illustrates the results of the challenge on the 2021 dataset, which has been further extended compared to the previous edition run in 2020.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IEEE AVSS2021无人机对鸟探测挑战赛
本文介绍了与第17届IEEE高级视频和基于信号的监控(AVSS)国际会议一起推出的第4版“无人机对鸟”检测挑战。该挑战的目标是解决在鸟类可能突然出现的视频场景中检测一个或多个无人机存在的问题,同时考虑到一些重要的影响,如背景和前景运动。所提出的解决方案应该只有在无人机实际存在时才能识别和定位场景中的无人机,而不会被鸟类的存在和捕获场景的动态特性所迷惑。本文说明了2021年数据集的挑战结果,与2020年运行的上一版本相比,该数据集得到了进一步扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometry-Based Person Re-Identification in Fisheye Stereo On the Performance of Crowd-Specific Detectors in Multi-Pedestrian Tracking ARPD: Anchor-free Rotation-aware People Detection using Topview Fisheye Camera A Fire Detection Model Based on Tiny-YOLOv3 with Hyperparameters Improvement A Splittable DNN-Based Object Detector for Edge-Cloud Collaborative Real-Time Video Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1