Selective image diffusion for oriented pattern extraction

ICINCO-RA Pub Date : 2007-05-09 DOI:10.5220/0001617802700274
A. Histace, V. Courboulay, M. Ménard
{"title":"Selective image diffusion for oriented pattern extraction","authors":"A. Histace, V. Courboulay, M. Ménard","doi":"10.5220/0001617802700274","DOIUrl":null,"url":null,"abstract":"Anisotropic regularization PDE's (Partial Differential Equation) raised a strong interest in the field of image processing. The benefit of PDE-based regularization methods lies in the ability to smooth data in a nonlinear way, allowing the preservation of important image features (contours, corners or other discontinuities). In this article, a selective diffusion approach based on the framework of Extreme Physical Information theory is presented. It is shown that this particular framework leads to a particular regularization PDE which makes it possible integration of prior knowledge within diffusion scheme. As a proof a feasibility, results of oriented pattern extractions are presented on ad hoc images. This approach may find applicability in vision in robotics.","PeriodicalId":302311,"journal":{"name":"ICINCO-RA","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICINCO-RA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0001617802700274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Anisotropic regularization PDE's (Partial Differential Equation) raised a strong interest in the field of image processing. The benefit of PDE-based regularization methods lies in the ability to smooth data in a nonlinear way, allowing the preservation of important image features (contours, corners or other discontinuities). In this article, a selective diffusion approach based on the framework of Extreme Physical Information theory is presented. It is shown that this particular framework leads to a particular regularization PDE which makes it possible integration of prior knowledge within diffusion scheme. As a proof a feasibility, results of oriented pattern extractions are presented on ad hoc images. This approach may find applicability in vision in robotics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向模式提取的选择性图像扩散
各向异性正则化偏微分方程在图像处理领域引起了极大的兴趣。基于pde的正则化方法的好处在于能够以非线性方式平滑数据,允许保留重要的图像特征(轮廓、角点或其他不连续点)。本文提出了一种基于极限物理信息理论框架的选择性扩散方法。研究表明,这种特殊的框架导致了一个特殊的正则化偏微分方程,使得先验知识在扩散方案内的集成成为可能。为了证明该方法的可行性,给出了针对特殊图像的定向模式提取结果。这种方法可能适用于机器人视觉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Calibration Aspects of Multiple Line-scan Vision System Application for Planar Objects Inspection Automatic Generation of Executable Code for a Robot Cell using UPNP and XIRP Kamanbaré - a tree-climbing biomimetic robotic platform for environmental research Monte carlo localization in highly symmetric environments The tele-echography medical robot Otelo2 - teleoperated with a multi level architecture using trinomial protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1