Artificial neural networks for the generation and estimation of chaotic signals

A. Muller, J. Elmirghani
{"title":"Artificial neural networks for the generation and estimation of chaotic signals","authors":"A. Muller, J. Elmirghani","doi":"10.1109/GLOCOM.1998.775977","DOIUrl":null,"url":null,"abstract":"Dynamic feedback, inversion and LMS estimation have been established for the estimation of an information signal encoded onto a chaotic carrier. The poor resultant SNR/sub sig/ of the recovered signal limits the applicability of these methods. Two novel chaotic coding/decoding strategies based on artificial neural networks (ANN) and radial basis functions (RBF) have been developed and the resultant performance has been assessed. The results indicate that the nonlinear predictor (ANN-RBF-NLP) offers performance independent of the channel SNR (for SNR>10 dB) and offers 4 dB improved SNR/sub sig/ compared to the LMS. Pseudo-chaotic sequences generated using an ANN and estimated in a dynamic feedback manner (ANN-RBF-DF) have resulted in a system with an SNR/sub sig/ that is linearly dependent on the channel SNR and offering for example 20 dB improved SNR/sub sig/ compared to the LMS at a channel SNR of 40 dB.","PeriodicalId":414137,"journal":{"name":"IEEE GLOBECOM 1998 (Cat. NO. 98CH36250)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE GLOBECOM 1998 (Cat. NO. 98CH36250)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.1998.775977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Dynamic feedback, inversion and LMS estimation have been established for the estimation of an information signal encoded onto a chaotic carrier. The poor resultant SNR/sub sig/ of the recovered signal limits the applicability of these methods. Two novel chaotic coding/decoding strategies based on artificial neural networks (ANN) and radial basis functions (RBF) have been developed and the resultant performance has been assessed. The results indicate that the nonlinear predictor (ANN-RBF-NLP) offers performance independent of the channel SNR (for SNR>10 dB) and offers 4 dB improved SNR/sub sig/ compared to the LMS. Pseudo-chaotic sequences generated using an ANN and estimated in a dynamic feedback manner (ANN-RBF-DF) have resulted in a system with an SNR/sub sig/ that is linearly dependent on the channel SNR and offering for example 20 dB improved SNR/sub sig/ compared to the LMS at a channel SNR of 40 dB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于混沌信号产生和估计的人工神经网络
对编码到混沌载波上的信息信号进行了动态反馈、反演和LMS估计。恢复信号的不良SNR/sub sig限制了这些方法的适用性。提出了基于人工神经网络(ANN)和径向基函数(RBF)的两种新型混沌编码/解码策略,并对其性能进行了评价。结果表明,非线性预测器(ANN-RBF-NLP)提供与信道信噪比无关的性能(信噪比为bbb10 dB),并且与LMS相比,信噪比/sub sig/提高了4 dB。使用人工神经网络生成并以动态反馈方式估计的伪混沌序列(ANN- rbf - df)产生了一个SNR/sub sig/线性依赖于信道信噪比的系统,并且与信道信噪比为40 dB的LMS相比,提供了例如20 dB的SNR/sub sig/改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance evaluation and parameter optimization of wavelength division multiplexing networks with adaptive importance sampling techniques TCP over end-to-end ABR: a study of TCP performance with end-to-end rate control and stochastic available capacity Delay analysis for CBR traffic in static-priority scheduling: single-node and heterogeneous CBR traffic case Feedback rate control with congestion prediction by edge nodes in ATM-WAN Direct-detection optical asynchronous CDMA systems with double optical hard-limiters: APD noise and thermal noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1