FGenHUSM: Một thuật toán hiệu quả khai thác các chuỗi sinh phổ biến lợi ích cao

Trương Tín Chí, Trần Ngọc Ánh, Dương Văn Hải, Lê Hoài Bắc
{"title":"FGenHUSM: Một thuật toán hiệu quả khai thác các chuỗi sinh phổ biến lợi ích cao","authors":"Trương Tín Chí, Trần Ngọc Ánh, Dương Văn Hải, Lê Hoài Bắc","doi":"10.32913/mic-ict-research-vn.v2019.n2.872","DOIUrl":null,"url":null,"abstract":"Khai thác các chuỗi phổ biến và các chuỗi lợi ích cao có mức độ quan trọng khác nhau trong các ứng dụng thực tế. Gần đây, các nghiên cứu tập trung giải quyết bài toán tổng quát hơn, là khai thác tập FHUS chuỗi phổ biến lợi ích cao. Tuy nhiên, thời gian và bộ nhớ dùng để khai thác FHUS vẫn còn quá lớn. Bài báo đề xuất khái niệm tập FGHUS các chuỗi sinh phổ biến lợi ích cao, là một biểu diễn súc tích của FHUS, và một thuật toán mới hiệu quả để khai thác nó. Dựa vào hai chặn trên của độ đo lợi ích, hai chiến lược tỉa theo chiều rộng và sâu được thiết kế để loại bỏ nhanh các chuỗi ít phổ biến hoặc lợi ích thấp. Sử dụng một chặn dưới mới của lợi ích, một chiến lược tỉa địa phương mới được đề xuất để loại bỏ sớm các chuỗi không là chuỗi sinh phổ biến lợi ích cao. Dựa vào các chiến lược này, một thuật toán mới FGenHUSM được thiết kế để khai thác FGHUS mà tính hiệu quả của nó được thể hiện qua các thử nghiệm trên các cơ sở dữ liệu lớn.","PeriodicalId":432355,"journal":{"name":"Research and Development on Information and Communication Technology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research and Development on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32913/mic-ict-research-vn.v2019.n2.872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Khai thác các chuỗi phổ biến và các chuỗi lợi ích cao có mức độ quan trọng khác nhau trong các ứng dụng thực tế. Gần đây, các nghiên cứu tập trung giải quyết bài toán tổng quát hơn, là khai thác tập FHUS chuỗi phổ biến lợi ích cao. Tuy nhiên, thời gian và bộ nhớ dùng để khai thác FHUS vẫn còn quá lớn. Bài báo đề xuất khái niệm tập FGHUS các chuỗi sinh phổ biến lợi ích cao, là một biểu diễn súc tích của FHUS, và một thuật toán mới hiệu quả để khai thác nó. Dựa vào hai chặn trên của độ đo lợi ích, hai chiến lược tỉa theo chiều rộng và sâu được thiết kế để loại bỏ nhanh các chuỗi ít phổ biến hoặc lợi ích thấp. Sử dụng một chặn dưới mới của lợi ích, một chiến lược tỉa địa phương mới được đề xuất để loại bỏ sớm các chuỗi không là chuỗi sinh phổ biến lợi ích cao. Dựa vào các chiến lược này, một thuật toán mới FGenHUSM được thiết kế để khai thác FGHUS mà tính hiệu quả của nó được thể hiện qua các thử nghiệm trên các cơ sở dữ liệu lớn.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FGenHUSM:一种高效的算法,可以有效地利用常见的高收益生物链
利用常见的序列和高收益序列在实际应用中具有不同程度的重要性。最近,研究集中在更普遍的问题上,即利用常见的高收益链。然而,利用FHUS的时间和内存仍然太大。这篇文章提出了一个概念,即FGHUS的高收益共生体序列,是FHUS的一个简洁的演示,以及一个有效的新算法来利用它。根据上述两种利益衡量方法,两种宽度和深度的修剪策略,旨在快速消除不常见的或低利益链。利用一种新的利益遮挡,提出了一种新的本地修剪策略,以尽早去除不常见的高利益链。基于这些策略,一种新的FGenHUSM算法被设计用来利用FGHUS,其有效性可以通过大型数据库的测试来体现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Một thuật toán định tuyến cân bằng năng lượng trong mạng cảm biến không dây dựa trên SDN Location Fusion and Data Augmentation for Thoracic Abnormalites Detection in Chest X-Ray Images A review of cyber security risk assessment for web systems during its deployment and operation Surveying Some Metaheuristic Algorithms For Solving Maximum Clique Graph Problem Deep Learning of Image Representations with Convolutional Neural Networks Autoencoder for Image Retrieval with Relevance Feedback
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1