Poster: Blockchain-Enabled Federated Edge Learning for Big Data Quality Assessment

Yalong Wu, Kewei Sha, K. Yue
{"title":"Poster: Blockchain-Enabled Federated Edge Learning for Big Data Quality Assessment","authors":"Yalong Wu, Kewei Sha, K. Yue","doi":"10.1109/SEC54971.2022.00032","DOIUrl":null,"url":null,"abstract":"Data quality is essential to pricing big data and deciding its trading profit in digital market. Traditional machine learning-based data quality assessment methods support the valuation of data assets. Nonetheless, these methods require data to be sent over and assessed at centralized cloud, which incurs unprecedented data transmission cost and may jeopardize data privacy. To address these issues, in this poster, we propose a privacy-preserving big data quality assessment scheme (p2 QA) on the basis of blockchain and federated edge learning (FEEL). p2QA aims to notably reduce data transmission cost, accurately measure big data quality, and effectively prevent malicious parties from violating data privacy.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data quality is essential to pricing big data and deciding its trading profit in digital market. Traditional machine learning-based data quality assessment methods support the valuation of data assets. Nonetheless, these methods require data to be sent over and assessed at centralized cloud, which incurs unprecedented data transmission cost and may jeopardize data privacy. To address these issues, in this poster, we propose a privacy-preserving big data quality assessment scheme (p2 QA) on the basis of blockchain and federated edge learning (FEEL). p2QA aims to notably reduce data transmission cost, accurately measure big data quality, and effectively prevent malicious parties from violating data privacy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海报:区块链支持的大数据质量评估联邦边缘学习
在数字市场中,数据质量是决定大数据定价和交易利润的关键。传统的基于机器学习的数据质量评估方法支持数据资产的估值。然而,这些方法需要在集中式云上发送和评估数据,这产生了前所未有的数据传输成本,并可能危及数据隐私。为了解决这些问题,在这张海报中,我们提出了一个基于区块链和联邦边缘学习(FEEL)的隐私保护大数据质量评估方案(p2 QA)。p2QA旨在显著降低数据传输成本,准确衡量大数据质量,有效防止恶意方侵犯数据隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opportunities for Optimizing the Container Runtime Poster: EdgeShell - A language for composing edge applications Quantum Text Encoding for Classification Tasks Scaling Vehicle Routing Problem Solvers with QUBO-based Specialized Hardware FLiCR: A Fast and Lightweight LiDAR Point Cloud Compression Based on Lossy RI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1