Stable Nonlinear Receding Horizon Regulator Using RBF Neural Network Models

Z. Ahmida, A. Charef, V. Becerra
{"title":"Stable Nonlinear Receding Horizon Regulator Using RBF Neural Network Models","authors":"Z. Ahmida, A. Charef, V. Becerra","doi":"10.1109/MED.2006.328824","DOIUrl":null,"url":null,"abstract":"The general stability theory of nonlinear receding horizon controllers has attracted much attention over the last fifteen years, and many algorithms have been proposed to ensure closed-loop stability. On the other hand many reports exist regarding the use of artificial neural network models in nonlinear receding horizon control. However, little attention has been given to the stability issue of these specific controllers. This paper addresses this problem and proposes to cast the nonlinear receding horizon control based on neural network models within the framework of an existing stabilising algorithm","PeriodicalId":347035,"journal":{"name":"2006 14th Mediterranean Conference on Control and Automation","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 14th Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2006.328824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The general stability theory of nonlinear receding horizon controllers has attracted much attention over the last fifteen years, and many algorithms have been proposed to ensure closed-loop stability. On the other hand many reports exist regarding the use of artificial neural network models in nonlinear receding horizon control. However, little attention has been given to the stability issue of these specific controllers. This paper addresses this problem and proposes to cast the nonlinear receding horizon control based on neural network models within the framework of an existing stabilising algorithm
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于RBF神经网络模型的稳定非线性后退水平调节器
近十五年来,非线性后退地平线控制器的一般稳定性理论引起了人们的广泛关注,并提出了许多保证闭环稳定性的算法。另一方面,关于人工神经网络模型在非线性后退水平控制中的应用已有许多报道。然而,很少有人关注这些特定控制器的稳定性问题。本文针对这一问题,提出了在已有的稳定算法框架内,基于神经网络模型的非线性地平线后退控制
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A note on Monotone Systems with Positive Translation Invariance Recent Advances on Linear Control Theory under Communication Constraints: A Survey Optimal path and tracking control of an autonomous VTOL aircraft A Finite Time Unknown Input Observer For Linear Systems Modelling and design of the half-bridge resonant inverter for induction cooking application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1