Forecasting with Dynamic Panel Data Models

L. Liu, H. Moon, F. Schorfheide
{"title":"Forecasting with Dynamic Panel Data Models","authors":"L. Liu, H. Moon, F. Schorfheide","doi":"10.2139/ssrn.2889000","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of forecasting a collection of short time series using cross‐sectional information in panel data. We construct point predictors using Tweedie's formula for the posterior mean of heterogeneous coefficients under a correlated random effects distribution. This formula utilizes cross‐sectional information to transform the unit‐specific (quasi) maximum likelihood estimator into an approximation of the posterior mean under a prior distribution that equals the population distribution of the random coefficients. We show that the risk of a predictor based on a nonparametric kernel estimate of the Tweedie correction is asymptotically equivalent to the risk of a predictor that treats the correlated random effects distribution as known (ratio optimality). Our empirical Bayes predictor performs well compared to various competitors in a Monte Carlo study. In an empirical application, we use the predictor to forecast revenues for a large panel of bank holding companies and compare forecasts that condition on actual and severely adverse macroeconomic conditions.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2889000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

This paper considers the problem of forecasting a collection of short time series using cross‐sectional information in panel data. We construct point predictors using Tweedie's formula for the posterior mean of heterogeneous coefficients under a correlated random effects distribution. This formula utilizes cross‐sectional information to transform the unit‐specific (quasi) maximum likelihood estimator into an approximation of the posterior mean under a prior distribution that equals the population distribution of the random coefficients. We show that the risk of a predictor based on a nonparametric kernel estimate of the Tweedie correction is asymptotically equivalent to the risk of a predictor that treats the correlated random effects distribution as known (ratio optimality). Our empirical Bayes predictor performs well compared to various competitors in a Monte Carlo study. In an empirical application, we use the predictor to forecast revenues for a large panel of bank holding companies and compare forecasts that condition on actual and severely adverse macroeconomic conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态面板数据模型预测
本文研究了利用面板数据中的横截面信息预测一组短时间序列的问题。在相关随机效应分布下,我们使用Tweedie公式构建异质系数的后验均值点预测器。该公式利用横截面信息将单位特定(拟)最大似然估计量转换为等于随机系数总体分布的先验分布下的后验均值近似值。我们表明,基于Tweedie校正的非参数核估计的预测器的风险渐近等同于将相关随机效应分布视为已知(比率最优性)的预测器的风险。在蒙特卡洛研究中,我们的经验贝叶斯预测器与各种竞争对手相比表现良好。在一个实证应用中,我们使用预测器来预测一大批银行控股公司的收入,并比较在实际和严重不利的宏观经济条件下的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embrace the Differences: Revisiting the Pollyvote Method of Combining Forecasts for U.S. Presidential Elections (2004 to 2020) A Century of Economic Policy Uncertainty Through the French-Canadian Lens Informational Efficiency and Behaviour Within In-Play Prediction Markets A New Class of Robust Observation-Driven Models Modelling and Forecasting of the Nigerian Stock Exchange.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1