Aerial Image Segmentation In Urban Environment For Vegetation Monitoring

J. Martins, D. Sant’Ana, J. M. Junior, H. Pistori, W. Gonçalves
{"title":"Aerial Image Segmentation In Urban Environment For Vegetation Monitoring","authors":"J. Martins, D. Sant’Ana, J. M. Junior, H. Pistori, W. Gonçalves","doi":"10.1109/LAGIRS48042.2020.9165618","DOIUrl":null,"url":null,"abstract":"Urban forests are crucial for the population well-being and improvement of the quality of life. For example, they contribute to the rain damping and to the improvement of the local climate. Therefore a correct and accurate mapping of this resource is fundamental for its correct management. We investigated a method that combines machine learning and SLIC superpixel techniques using different Superpixels (k) number to map trees in the metropolitan region of the municipality of Campo Grande-MS, Brazil with aerial orthoimages with GSD (Ground Sample Distance) of 10 cm. The combination of superpixels and machine learning algorithms were checked out with a set of weka classifiers and achieved good results i.e. F-1 %98.2, MCC %88.4 and Accuracy of % 96.8, supporting that this method is efficient when used for urban trees mapping.","PeriodicalId":111863,"journal":{"name":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAGIRS48042.2020.9165618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Urban forests are crucial for the population well-being and improvement of the quality of life. For example, they contribute to the rain damping and to the improvement of the local climate. Therefore a correct and accurate mapping of this resource is fundamental for its correct management. We investigated a method that combines machine learning and SLIC superpixel techniques using different Superpixels (k) number to map trees in the metropolitan region of the municipality of Campo Grande-MS, Brazil with aerial orthoimages with GSD (Ground Sample Distance) of 10 cm. The combination of superpixels and machine learning algorithms were checked out with a set of weka classifiers and achieved good results i.e. F-1 %98.2, MCC %88.4 and Accuracy of % 96.8, supporting that this method is efficient when used for urban trees mapping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
城市环境航拍图像分割用于植被监测
城市森林对人民的福祉和生活质量的改善至关重要。例如,它们有助于雨水阻尼和改善当地气候。因此,正确和准确地映射该资源是正确管理该资源的基础。我们研究了一种结合机器学习和SLIC超像素技术的方法,使用不同的超像素(k)数,使用GSD(地面样本距离)为10 cm的航空正射像在巴西Campo Grande-MS市的大都市地区绘制树木。使用weka分类器验证了超像素和机器学习算法的组合,并取得了良好的结果,即F-1 % 98.2%, MCC %88.4和准确率% 96.8,支持该方法在用于城市树木映射时是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deforestation Polygon Assessment Tool: Providing Comprehensive Information On Deforestation In The Brazilian Cerrado Biome Assessment of rainfall influence on sentinel-1 time series on amazonian tropical forests aiming deforestation detection improvement Spatial Association To Characterize The Climate Teleconnection Patterns In Ecuador Based On Satellite Precipitation Estimates Subsidence in Maceio, Brazil, Characterized by Dinsar and Inverse Modeling Preliminary Analysis For Automatic Tidal Inlets Mapping Using Google Earth Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1